#pragma region Macros #pragma GCC optimize("O3,unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,fma,mmx,abm,bmi,bmi2,popcnt,lzcnt") #pragma GCC target("avx2") // CF, CodeChef, HOJ ではコメントアウト #include // #include // using namespace atcoder; using namespace std; using namespace __gnu_pbds; // #include // #include // namespace mp = boost::multiprecision; // using Bint = mp::cpp_int; // using Bdouble = mp::number>; // Bdouble Beps = 0.00000000000000000000000000000001; // 1e-32 // const bool equals(Bdouble a, Bdouble b) { return mp::fabs(a - b) < Beps; } #define pb emplace_back // #define int ll #define endl '\n' // #define sqrt __builtin_sqrtl // #define cbrt __builtin_cbrtl // #define hypot __builtin_hypotl using ll = long long; using ld = long double; const ld PI = acosl(-1); const int INF = 1 << 30; const ll INFL = 1LL << 61; // const int MOD = 998244353; const int MOD = 1000000007; const ld EPS = 1e-10; const bool equals(ld a, ld b) { return fabs((a) - (b)) < EPS; } const vector dx = {0, 1, 0, -1, 1, 1, -1, -1, 0}; // → ↓ ← ↑ ↘ ↙ ↖ ↗ 自 const vector dy = {1, 0, -1, 0, 1, -1, -1, 1, 0}; #define EC int struct Edge { int from, to; EC cost; Edge() {} // Edge() : from(-1), to(-1), cost(-1) {} Edge(int to, EC cost) : to(to), cost(cost) {} Edge(int from, int to, EC cost) : from(from), to(to), cost(cost) {} bool operator ==(const Edge &e) { return this->from == e.from && this->to == e.to && this->cost == e.cost; } bool operator !=(const Edge &e) { return this->from != e.from or this->to != e.to or this->cost != e.cost; } bool operator <(const Edge &e) { return this->cost < e.cost; } bool operator >(const Edge &e) { return this->cost > e.cost; } }; chrono::system_clock::time_point start; __attribute__((constructor)) void constructor() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(10); start = chrono::system_clock::now(); } random_device seed_gen; mt19937_64 rng(seed_gen()); uniform_int_distribution dist_x(0, 1e9); struct RNG { unsigned Int() { return dist_x(rng); } unsigned Int(unsigned l, unsigned r) { return dist_x(rng) % (r - l + 1) + l; } ld Double() { return ld(dist_x(rng)) / 1e9; } } rnd; namespace bit_function { using i64 = ll; // using i64 = uint64_t; // bit演算, x==0の場合は例外処理した方がよさそう. 区間は [l, r) i64 lrmask(int l, int r) { return (1LL << r) - (1LL << l); } i64 sub_bit(i64 x, int l, int r) { i64 b = x & ((1LL << r) - (1LL << l)); return b >> l; } // r溢れ可 i64 bit_width(i64 x) { return 64 - __builtin_clzll(x) + (x == 0); } i64 popcount(i64 x) { return __builtin_popcountll(x); } i64 popcount(i64 x, int l, int r) { return __builtin_popcountll(sub_bit(x, l, r)); } i64 unpopcount(i64 x) { return bit_width(x) - __builtin_popcountll(x); } // 最上位bitより下のみ i64 unpopcount(i64 x, int l, int r) { return r - l - __builtin_popcountll(sub_bit(x, l, r)); } // 最上位bitより上も含まれうる bool is_pow2(i64 x) { return __builtin_popcountll(x) == 1; } // xが負のときは常にfalse bool is_pow4(i64 x) { return __builtin_popcountll(x) == 1 && __builtin_ctz(x) % 2 == 0; } //bool is_pow4(ll x) { return __builtin_popcountll(x) == 1 && (x&0x55555555); } int top_bit(i64 x) { return 63 - __builtin_clzll(x);} // 2^kの位 (x > 0) int bot_bit(i64 x) { return __builtin_ctzll(x);} // 2^kの位 (x > 0) int next_bit(i64 x, int k) { // upper_bound x >>= (k + 1); int pos = k + 1; while (x > 0) { if (x & 1) return pos; x >>= 1; pos++; } return -1; } int prev_bit(i64 x, int k) { // k = min(k, bit_width(x)); ? int pos = 0; while (x > 0 && pos < k) { if (x & 1) { if (pos < k) return pos; } x >>= 1; pos++; } return -1; } int kth_bit(i64 x, int k) { // kは1-indexed int pos = 0, cnt = 0; while (x > 0) { if (x & 1) { cnt++; if (cnt == k) return pos; } x >>= 1; pos++; } return -1; } i64 msb(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // mask i64 lsb(i64 x) { return (x & -x); } // mask int countl_zero(i64 x) { return __builtin_clzll(x); } int countl_one(i64 x) { // countl_oneと定義が異なるので注意 i64 ret = 0, k = 63 - __builtin_clzll(x); while (k != -1 && (x & (1LL << k))) { k--; ret++; } return ret; } int countr_zero(i64 x) { return __builtin_ctzll(x); } // x=0のとき64 int countr_one(i64 x) { int ret = 0; while (x & 1) { x >>= 1; ret++; } return ret; } // int countr_one(ll x) { return __builtin_popcount(x ^ (x & -~x)); i64 l_one(i64 x) { // 最上位で連なってる1のmask if (x == 0) return 0; i64 ret = 0, k = 63 - __builtin_clzll(x); while (k != -1 && (x & (1LL << k))) { ret += 1LL << k; k--; } return ret; } int floor_log2(i64 x) { return 63 - __builtin_clzll(x); } // top_bit int ceil_log2(i64 x) { return 64 - __builtin_clzll(x - 1); } i64 bit_floor(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // msb i64 bit_ceil(i64 x) { if (x == 0) return 0; return 1LL << (64 - __builtin_clzll(x - 1)); } i64 rotl(i64 x, int k) { // 有効bit内でrotate. オーバーフロー注意 i64 w = bit_width(x); k %= w; return ((x << k) | (x >> (w - k))) & ((1LL << w) - 1); } // i64 rotl(i64 x, i64 l, i64 m, i64 r) {} i64 rotr(i64 x, int k) { i64 w = bit_width(x); k %= w; return ((x >> k) | (x << (w - k))) & ((1LL << w) - 1); } // i64 rotr(i64 x, i64 l, i64 m, i64 r) {} i64 bit_reverse(i64 x) { // 有効bit内で左右反転 i64 r = 0, w = bit_width(x); for (i64 i = 0; i < w; i++) r |= ((x >> i) & 1) << (w - i - 1); return r; } // i64 bit_reverse(i64 x, int l, int r) {} bool is_palindrome(i64 x) { return x == bit_reverse(x); } bool is_palindrome(i64 x, int l, int r) { i64 b = sub_bit(x, l, r); return b == bit_reverse(b); } i64 concat(i64 a, i64 b) { return (a << bit_width(b)) | b; } // オーバーフロー注意 i64 erase(i64 x, int l, int r) { return x >> r << l | x & ((1LL << l) - 1); } // [l, r) をカット i64 hamming(i64 a, i64 b) { return __builtin_popcountll(a ^ b); } i64 hamming(i64 a, i64 b, int l, int r) { return __builtin_popcountll(sub_bit(a, l, r) ^ sub_bit(b, l, r)); } i64 compcount(i64 x) { return (__builtin_popcountll(x ^ (x >> 1)) + (x & 1)) / 2; } i64 compcount2(i64 x) { return compcount(x & (x >> 1)); } // 長さ2以上の連結成分の個数 i64 adjacount(i64 x) { return __builtin_popcountll(x & (x >> 1)); } // 隣接する1のペアの個数 i64 next_combination(i64 x) { i64 t = x | (x - 1); return (t + 1) | (((~t & -~t) - 1) >> (__builtin_ctzll(x) + 1)); } } using namespace bit_function; namespace util_function { namespace Std = std; __int128_t POW(__int128_t x, int n) { __int128_t ret = 1; assert(n >= 0); if (x == 1 or n == 0) ret = 1; else if (x == -1 && n % 2 == 0) ret = 1; else if (x == -1) ret = -1; else if (n % 2 == 0) { // assert(x < INFL); ret = POW(x * x, n / 2); } else { // assert(x < INFL); ret = x * POW(x, n - 1); } return ret; } int per(int x, int y) { // x = qy + r (0 <= r < y) を満たすq assert(y != 0); if (x >= 0 && y > 0) return x / y; if (x >= 0 && y < 0) return x / y - (x % y < 0); if (x < 0 && y < 0) return x / y + (x % y < 0); return x / y - (x % y < 0); // (x < 0 && y > 0) } int mod(int x, int y) { // x = qy + r (0 <= r < y) を満たすr assert(y != 0); return x - y * per(x, y); } // https://yukicoder.me/problems/no/2781 int floor(int x, int y) { // (ld)x / y 以下の最大の整数 assert(y != 0); if (y < 0) x = -x, y = -y; return x >= 0 ? x / y : (x + 1) / y - 1; } int ceil(int x, int y) { // (ld)x / y 以上の最小の整数 assert(y != 0); if (y < 0) x = -x, y = -y; return x > 0 ? (x - 1) / y + 1 : x / y; } int round(int x, int y) { // (ld)x / y を小数第1位について四捨五入 assert(y != 0); return (x * 2 + y) / (y * 2); } int round(int x, int y, int k) { // (ld)x / y を10^kの位に関して四捨五入 assert(y != 0 && k >= 0); if (k == 0) return (x * 2 + y) / (y * 2); x /= y * POW(10, k - 1); if (x % 10 >= 5) return (x + 10 - x % 10) * POW(10, k - 1); return x * POW(10, k - 1); } int round2(int x, int y) { // 五捨五超入 // 未verify assert(y != 0); if (y < 0) y = -y, x = -x; int z = x / y; if ((z * 2 + 1) * y <= y * 2) z++; return z; } ld round(ld x, int k) { // xを10^kの位に関して四捨五入. // x += EPS; ld d = pow(10, -k); return Std::round(x * d) / d; } ld floor(ld x, int k) { // xを10^kの位に関してflooring // x += EPS; ld d = pow(10, -k); return Std::floor(x * d) / d; // 未verify } ld ceil(ld x, int k) { // xを10^kの位に関してceiling // x -= EPS; ld d = pow(10, -k); return Std::ceil(x * d) / d; // 未verify } // int kth(int x, int y, int k) { // x / yの10^kの位の桁 // } int floor(ld x, ld y) { // 誤差対策TODO assert(!equals(y, 0)); return Std::floor(x / y); // floor(x) = ceil(x - 1) という話も } int ceil(ld x, ld y) { // 誤差対策TODO // ceil(p/q) = -floor(-(p/q))らしい assert(!equals(y, 0)); return Std::ceil(x / y); // ceil(x) = floor(x + 1) } int perl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす q // 未verify. 誤差対策TODO. EPS外してもいいかも。 assert(!equals(y, 0)); if (x >= 0 && y > 0) return Std::floor(x / y)+EPS; if (x >= 0 && y < 0) return -Std::floor(x / fabs(y)); if (x < 0 && y < 0) return Std::floor(x / y) + (x - Std::floor(x/y)*y < -EPS); return Std::floor(x / y) - (x - Std::floor(x/y)*y < -EPS); // (x < 0 && y > 0) } ld modl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす r // 未verify. 誤差対策TODO. -0.0が返りうる。 assert(!equals(y, 0)); if (x >= 0) return x - fabs(y)*fabs(per(x, y)); return x - fabs(y)*floor(x, fabs(y)); } int seisuu(ld x) { return (int)x; } // 整数部分. 誤差対策TODO int modf(ld x) { if (x < 0) return ceill(x); else return floorl(x); } // 正なら+EPS, 負なら-EPSしてから、文字列に直して小数点以下を捨てる? int seisuu(int x, int y) { assert(y != 0); return x / y; } int seisuu(ld x, ld y) { // 誤差対策TODO assert(!equals(y, 0)); return (int)(x / y); } int floor_log(int base, int x) { assert(base >= 2); int ret = 0, now = 1; while (now <= x) { now *= base; if (now <= x) ret++; } return ret; } int ceil_log(int base, int x) { assert(base >= 2); int ret = 0, now = 1; while (now < x) { now *= base; ret++; } return ret; } template pair max(const pair &a, const pair &b) { if (a.first > b.first or a.first == b.first && a.second > b.second) return a; return b; } template pair min(const pair &a, const pair &b) { if (a.first < b.first or a.first == b.first && a.second < b.second) return a; return b; } template bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } template bool chmax(pair &a, const pair &b) { if (a.first < b.first or a.first == b.first && a.second < b.second) { a = b; return true; } return false; } template bool chmin(pair &a, const pair &b) { if (a.first > b.first or a.first == b.first && a.second > b.second) { a = b; return true; } return false; } template T mid(T a, T b, T c) { // 誤差対策TODO return a + b + c - Std::max({a, b, c}) - Std::min({a, b, c}); } template void Sort(T& a, T& b, T& c, Args&... args) { vector vec = {a, b, c, args...}; sort(vec.begin(), vec.end()); auto it = vec.begin(); a = *it++; b = *it++; c = *it++; int dummy[] = { (args = *it++, 0)... }; static_cast(dummy); } template void Sortr(T& a, T& b, T& c, Args&... args) { vector vec = {a, b, c, args...}; sort(vec.rbegin(), vec.rend()); auto it = vec.begin(); a = *it++; b = *it++; c = *it++; int dummy[] = { (args = *it++, 0)... }; static_cast(dummy); } template void sort(vector &A, vector &B) { vector> P(A.size()); for (int i = 0; i < A.size(); i++) P[i] = {A[i], B[i]}; sort(P.begin(), P.end()); for (int i = 0; i < A.size(); i++) A[i] = P[i].first, B[i] = P[i].second; } istream &operator >>(istream &is, __int128_t& x) { string S; is >> S; __int128_t ret = 0; int f = 1; if (S[0] == '-') f = -1; for (int i = 0; i < S.length(); i++) if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0'; x = ret * f; return (is); } ostream &operator <<(ostream &os, __int128_t x) { ostream::sentry s(os); if (s) { __uint128_t tmp = x < 0 ? -x : x; char buffer[128]; char *d = end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (x < 0) { --d; *d = '-'; } int len = end(buffer) - d; if (os.rdbuf()->sputn(d, len) != len) os.setstate(ios_base::badbit); } return os; } __int128_t sto128(const string &S) { __int128_t ret = 0; int f = 1; if (S[0] == '-') f = -1; for (int i = 0; i < S.length(); i++) if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0'; return ret * f; } __int128_t gcd(__int128_t a, __int128_t b) { return b ? gcd(b, a % b) : a; } __int128_t lcm(__int128_t a, __int128_t b) { return a / gcd(a, b) * b; // lcmが__int128_tに収まる必要あり } string to_string(double x, int k) { // 小数第k+1を四捨五入して小数第k位までを出力 // 切り捨てがほしい場合は to_string(x, k+1) として pop_back() すればよい? ostringstream os; os << fixed << setprecision(k) << x; return os.str(); } string to_string(__int128_t x) { string ret = ""; if (x < 0) { ret += "-"; x *= -1; } while (x) { ret += (char)('0' + x % 10); x /= 10; } reverse(ret.begin(), ret.end()); return ret; } string to_string(char c) { string s = ""; s += c; return s; } } using namespace util_function; struct custom_hash { static uint64_t splitmix64(uint64_t x) { x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } }; template size_t HashCombine(const size_t seed,const T &v) { return seed^(hash()(v)+0x9e3779b9+(seed<<6)+(seed>>2)); } template struct hash>{ size_t operator()(const pair &keyval) const noexcept { return HashCombine(hash()(keyval.first), keyval.second); } }; template struct hash>{ size_t operator()(const vector &keyval) const noexcept { size_t s=0; for (auto&& v: keyval) s=HashCombine(s,v); return s; } }; template struct HashTupleCore{ template size_t operator()(const Tuple &keyval) const noexcept{ size_t s=HashTupleCore()(keyval); return HashCombine(s,get(keyval)); } }; template <> struct HashTupleCore<0>{ template size_t operator()(const Tuple &keyval) const noexcept{ return 0; } }; template struct hash>{ size_t operator()(const tuple &keyval) const noexcept { return HashTupleCore>::value>()(keyval); } }; template class Compress { public: int sz = 0; vector uniqV; Compress() {} template Compress(const Vecs&... vecs) { (uniqV.insert(uniqV.end(), vecs.begin(), vecs.end()), ...); sort(uniqV.begin(), uniqV.end()); uniqV.erase(unique(uniqV.begin(), uniqV.end()), uniqV.end()); sz = uniqV.size(); } vector zip(const vector &V) { vector ret(V.size()); for (int i = 0; i < V.size(); i++) { ret[i] = encode(V[i]); } return ret; } vector unzip(const vector &V) { vector ret(V.size()); for (int i = 0; i < V.size(); i++) { ret[i] = decode(V[i]); } return ret; } int size() { return sz; } int encode(T x) { auto it = lower_bound(uniqV.begin(), uniqV.end(), x); return it - uniqV.begin(); } T decode(int x) { if (x < 0 or x >= uniqV.size()) return -1; // xが範囲外の場合 return uniqV[x]; } }; class UnionFind { public: UnionFind() = default; UnionFind(int N) : par(N), sz(N, 1) { iota(par.begin(), par.end(), 0); } int root(int x) { if (par[x] == x) return x; return (par[x] = root(par[x])); } bool unite(int x, int y) { int rx = root(x); int ry = root(y); if (rx == ry) return false; if (sz[rx] < sz[ry]) swap(rx, ry); sz[rx] += sz[ry]; par[ry] = rx; return true; } bool issame(int x, int y) { return (root(x) == root(y)); } int size(int x) { return sz[root(x)]; } vector> groups(int N) { vector> G(N); for (int x = 0; x < N; x++) { G[root(x)].push_back(x); } G.erase( remove_if(G.begin(), G.end(), [&](const vector& V) { return V.empty(); }), G.end()); return G; } private: vector par, sz; }; template struct BIT { int N; // 要素数 vector bit[2]; // データの格納先 BIT(int N_, int x = 0) { N = N_ + 1; bit[0].assign(N, 0); bit[1].assign(N, 0); if (x != 0) { for (int i = 0; i < N; i++) add(i, x); } } BIT(const vector &A) { N = A.size() + 1; bit[0].assign(N, 0); bit[1].assign(N, 0); for (int i = 0; i < (int)A.size(); i++) add(i, A[i]); } void add_sub(int p, int i, T x) { while (i < N) { bit[p][i] += x; i += (i & -i); } } void add(int l, int r, T x) { add_sub(0, l + 1, -x * l); add_sub(0, r + 1, x * r); add_sub(1, l + 1, x); add_sub(1, r + 1, -x); } void add(int i, T x) { add(i, i + 1, x); } T sum_sub(int p, int i) { T ret = 0; while (i > 0) { ret += bit[p][i]; i -= (i & -i); } return ret; } T sum(int i) { return sum_sub(0, i) + sum_sub(1, i) * i; } T sum(int l, int r) { return sum(r) - sum(l); } T get(int i) { return sum(i, i + 1); } void set(int i, T x) { T s = get(i); add(i, -s + x); } }; template class Modint { public: int val = 0; Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; } Modint(const Modint &r) { val = r.val; } Modint operator -() { return Modint(-val); } // 単項 Modint operator +(const Modint &r) { return Modint(*this) += r; } Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; } Modint operator -(const Modint &r) { return Modint(*this) -= r; } Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; } Modint operator *(const Modint &r) { return Modint(*this) *= r; } Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; } Modint operator /(const Modint &r) { return Modint(*this) /= r; } Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; } Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置 Modint operator ++(signed) { ++*this; return *this; } // 後置 Modint& operator --() { val--; if (val < 0) val += mod; return *this; } Modint operator --(signed) { --*this; return *this; } Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; } Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; } Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; } Modint &operator -=(const int &q) { Modint r(q); if (val < r.val) val += mod; val -= r.val; return *this; } Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; } Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; } Modint &operator /=(const Modint &r) { int a = r.val, b = mod, u = 1, v = 0; while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);} val = val * u % mod; if (val < 0) val += mod; return *this; } Modint &operator /=(const int &q) { Modint r(q); int a = r.val, b = mod, u = 1, v = 0; while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);} val = val * u % mod; if (val < 0) val += mod; return *this; } bool operator ==(const Modint& r) { return this -> val == r.val; } bool operator <(const Modint& r) { return this -> val < r.val; } bool operator >(const Modint& r) { return this -> val > r.val; } bool operator !=(const Modint& r) { return this -> val != r.val; } friend istream &operator >>(istream &is, Modint& x) { int t; is >> t; x = t; return (is); } friend ostream &operator <<(ostream &os, const Modint& x) { return os << x.val; } }; using mint = Modint; mint modpow(const mint &x, int n) { if (n < 0) return (mint)1 / modpow(x, -n); // 未verify assert(n >= 0); if (n == 0) return 1; mint t = modpow(x, n / 2); t = t * t; if (n & 1) t = t * x; return t; } int modpow(__int128_t x, int n, int mod) { if (n == 0 && mod == 1) return 0; assert(n >= 0 && mod > 0); // TODO: n <= -1 __int128_t ret = 1; while (n > 0) { if (n % 2 == 1) ret = ret * x % mod; x = x * x % mod; n /= 2; } return ret; } // int modinv(__int128_t x, int mod) { // // assert(mod > 0); // // assert(x > 0); // if (x == 1 or x == 0) return 1; // return mod - modinv(mod % x, mod) * (mod / x) % mod; // } vector _fac, _finv, _inv; void COMinit(int N) { _fac.resize(N + 1); _finv.resize(N + 1); _inv.resize(N + 1); _fac[0] = _fac[1] = 1; _finv[0] = _finv[1] = 1; _inv[1] = 1; for (int i = 2; i <= N; i++) { _fac[i] = _fac[i-1] * mint(i); _inv[i] = -_inv[MOD % i] * mint(MOD / i); _finv[i] = _finv[i - 1] * _inv[i]; } } mint FAC(int N) { if (N < 0) return 0; return _fac[N]; } mint FACinv(int N) { if (N < 0) return 0; return _finv[N]; } mint COM(int N, int K) { if (N < K) return 0; if (N < 0 or K < 0) return 0; return _fac[N] * _finv[K] * _finv[N - K]; } mint COMinv(int N, int K) { if (N < K) return 0; if (N < 0 or K < 0) return 0; return _finv[N] * _fac[K] * _fac[N - K]; } mint MCOM(const vector &V) { int N = 0; for (int i = 0; i < V.size(); i++) N += V[i]; mint ret = _fac[N]; for (int i = 0; i < V.size(); i++) ret *= _finv[V[i]]; return ret; } mint PERM(int N, int K) { if (N < K) return 0; if (N < 0 or K < 0) return 0; return _fac[N] * _finv[N - K]; } mint NHK(int N, int K) { // initのサイズに注意 if (N == 0 && K == 0) return 1; return COM(N + K - 1, K); } #pragma endregion namespace internal { #ifndef _MSC_VER template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; #else template using is_integral = typename std::is_integral; template using is_signed_int = typename std::conditional::value && std::is_signed::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional::value && std::is_unsigned::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional::value, std::make_unsigned, std::common_type>::type; #endif template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; } // namespace internal template * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime; }; template struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::barrett dynamic_modint::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; } // namespace internal template struct HashMap { using u32 = uint32_t; using u64 = uint64_t; u32 cap, s; vector keys; vector vals; vector flag; u64 r; u32 shift; Val DefaultValue; static u64 rng() { u64 m = chrono::duration_cast( chrono::high_resolution_clock::now().time_since_epoch()) .count(); m ^= m >> 16; m ^= m << 32; return m; } void reallocate() { cap <<= 1; vector k(cap); vector v(cap); vector f(cap); u32 sh = shift - 1; for (int i = 0; i < (int)flag.size(); i++) { if (flag[i]) { u32 hash = (u64(keys[i]) * r) >> sh; while (f[hash]) hash = (hash + 1) & (cap - 1); k[hash] = keys[i]; v[hash] = vals[i]; f[hash] = 1; } } keys.swap(k); vals.swap(v); flag.swap(f); --shift; } explicit HashMap() : cap(8), s(0), keys(cap), vals(cap), flag(cap), r(rng()), shift(64 - __lg(cap)), DefaultValue(Val()) {} Val& operator[](const Key& i) { u32 hash = (u64(i) * r) >> shift; while (true) { if (!flag[hash]) { if (s + s / 4 >= cap) { reallocate(); return (*this)[i]; } keys[hash] = i; flag[hash] = 1; ++s; return vals[hash] = DefaultValue; } if (keys[hash] == i) return vals[hash]; hash = (hash + 1) & (cap - 1); } } // exist -> return pointer of Val // not exist -> return nullptr const Val* find(const Key& i) const { u32 hash = (u64(i) * r) >> shift; while (true) { if (!flag[hash]) return nullptr; if (keys[hash] == i) return &(vals[hash]); hash = (hash + 1) & (cap - 1); } } // return vector< pair > vector> enumerate() const { vector> ret; for (u32 i = 0; i < cap; ++i) if (flag[i]) ret.emplace_back(keys[i], vals[i]); return ret; } int size() const { return s; } // set default_value void set_default(const Val& val) { DefaultValue = val; } }; template struct DynamicBIT { S N; HashMap data; explicit DynamicBIT() = default; explicit DynamicBIT(S size) { N = size + 1; } // explicit DynamicBIT(const vector &A) { // N = A.size() + 1; // for (int i = 0; i < N; i++) add(i, A[i]); // } void add(S k, T x) { for (++k; k < N; k += k & -k) data[k] += x; } void set(S k, T x) { add(k, -get(k) + x); } // [0, k) T sum(S k) const { if (k < 0) return 0; T ret = T(); for (; k > 0; k -= k & -k) { const T* p = data.find(k); ret += p ? *p : T(); } return ret; } // [a, b) T sum(S a, S b) const { return sum(b) - sum(a); } T get(S k) const { return sum(k + 1) - sum(k); } T operator[](S k) const { return sum(k + 1) - sum(k); } S lower_bound(T w) { if (w <= 0) return 0; S x = 0; for (S k = 1 << __lg(N); k; k >>= 1) { if (x + k <= N - 1 && data[x + k] < w) { w -= data[x + k]; x += k; } } return x; } }; using S = modint1000000007; signed main() { int N; cin >> N; vector A(N); for (int i = 0; i < N; i++) cin >> A[i]; Compress C(A); A = C.zip(A); int len = 0; vector dp(N + 1, INF); // A[i] を末尾とするLISの長さの最大値 vector L(N + 1); // 長さiのLISの末尾としてありえる最小値 vector cnt(N); // A[i] を末尾とするLISの個数 const int ma = C.size() + 1; vector> bit(N + 1, DynamicBIT(ma)); for (int i = 0; i < N; i++) { // 2周目 int x = lower_bound(L.begin(), L.begin() + len, A[i]) - L.begin(); dp[i] = x + 1; L[x] = A[i]; if (dp[i] > len) len++; if (dp[i] > 0) { // [x1, x2), [y1, y2) cnt[i] += bit[dp[i] - 1].sum(0, A[i]); } if (cnt[i].val() == 0) cnt[i] = 1; // 実際は矩形領域内の総和が0であるかを複数modで確かめる必要あり bit[dp[i]].add(A[i], cnt[i]); } S ans = 0; for (int i = 0; i < N; i++) { if (dp[i] == len) ans += cnt[i]; } cout << ans.val() << endl; }