#include <bits/stdc++.h> #include <atcoder/modint> using namespace std; using namespace atcoder; using ll = long long; using mint = modint998244353; map<ll, ll> prime; void prime_factor(ll n){ prime.clear(); ll m = n; if (n % 2 == 0){ while(n % 2 == 0){ prime[2]++; n /= 2; } } for (ll i = 3; i*i <= m; i+=2){ if (n % i == 0){ while(n % i == 0){ prime[i]++; n /= i; } } } if (n != 1){ prime[n]++; } } template<typename T> using pq = priority_queue<T, vector<T>, greater<T>>; vector<ll> dijkstra(vector<vector<ll>> &E, vector<ll> &B){ ll N = E.size(); ll from, alt, d; pq<pair<ll, ll>> que; vector<ll> dist(N, 1e18); vector<bool> vst(N); dist[0] = B[0]; que.push({B[0], 0}); while(!que.empty()){ tie(d, from) = que.top(); que.pop(); if (vst[from]) continue; vst[from] = 1; for (auto to : E[from]){ alt = max(d, B[to]); if (alt < dist[to]){ dist[to] = alt; que.push({dist[to], to}); } } } return dist; } int main(){ cin.tie(nullptr); ios_base::sync_with_stdio(false); /* Aの素因数pごとに考える。 素因数pの指数eを考えると、LCMのGCD->MAXのMIN 1->xに行く時のeの最大値の最小値でdist(x)を定める。 p^dist(x)の積 */ ll N, M, u, v; cin >> N >> M; //素因数の集合 vector<ll> v2, A(N); vector<mint> ans(N, 1); for (int i=0; i<N; i++){ cin >> A[i]; prime_factor(A[i]); for (auto [p, e] : prime) v2.push_back(p); } sort(v2.begin(), v2.end()); v2.erase(unique(v2.begin(), v2.end()), v2.end()); vector<vector<ll>> E(N); for (int i=0; i<M; i++){ cin >> u >> v; u--; v--; E[u].push_back(v); E[v].push_back(u); } for (auto p : v2){ vector<ll> B(N); for (int i=0; i<N; i++){ ll cnt=0, X; X = A[i]; while(X % p == 0){ X /= p; cnt++; } B[i] = cnt; } vector<ll> dist = dijkstra(E, B); for (int i=0; i<N; i++){ ans[i] *= mint(p).pow(dist[i]); } } for (int i=0; i<N; i++) cout << ans[i].val() << endl; return 0; }