#include using namespace std; using ll=long long; //f(i,j)はiからjに移動するコスト、Cは移動回数 template ll monotone_minima_limit(int N, F f, int C) { ll INF = 1ll<<60; vector D(N + 1, INF); D[0] = 0ll; for (int c = 0; c < C; ++c){ vector P = D; D.assign(N + 1, INF); vector I(N + 1, -1); D[0] = 0ll; I[0] = 0; for (int n = 0; n <= N; ++n) { if (P[n] + f(n, N) < D[N]) { D[N] = P[n] + f(n, N); I[N] = n; } } while (find(D.begin(), D.end(), INF) != D.end()) { int l=-1; for(int r=0;r<=N;r++){ if (D[r]==INF) continue; if (l==-1) { l=r; continue; } int m = (l + r) / 2; for (int n = I[l]; n <= min(I[r], m); ++n) { if (P[n] + f(n, m) < D[m]) { D[m] = P[n] + f(n, m); I[m] = n; } } l=r; } } } return D[N]; } //f(i,j)はiからjに移動するコスト、移動回数に制限なし template ll monotone_minima_unlimit(int N, F f) { ll INF = 1ll<<60; vector D(N + 1, INF); D[0] = 0ll; function solve = [&](int L, int R) { if (R - L <= 1) return; int M = (L + R) / 2; solve(L, M); vector U(R - M, INF); vector I(R - M, -1); for (int n = L; n < M; ++n) { if (D[n] + f(n, M) < U[0]) { U[0] = D[n] + f(n, M); I[0] = n; } if (D[n] + f(n, R - 1) < U[R - M - 1]) { U[R - M - 1] = D[n] + f(n, R - 1); I[R - M - 1] = n; } } while (find(U.begin(), U.end(), INF) != U.end()) { int l=-1; for (int r = M; r < R; ++r) { if (U[r - M] == INF) continue; if (l==-1){ l=r; continue; } int m = (l + r) / 2; for (int n = I[l - M]; n <= I[r - M]; ++n) { if (D[n] + f(n, m) < U[m - M]) { U[m - M] = D[n] + f(n, m); I[m - M] = n; } } l=r; } } for (int n = M; n < R; ++n) D[n] = min(D[n], U[n - M]); solve(M, R); }; solve(0, N + 1); return D[N]; } int main(){ int N;cin>>N; vector A(N),X(N),Y(N); for(int i=0;i>A[i]; } for(int i=0;i>X[i]; } for(int i=0;i>Y[i]; } auto f=[&](int i,int j){ ll d0=abs(X[i]-A[j-1]),d1=abs(Y[i]); return d0*d0*d0+d1*d1*d1; }; ll ans=monotone_minima_unlimit(N,f); cout<