#pragma region Macros #pragma GCC optimize("O3,unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,fma,mmx,abm,bmi,bmi2,popcnt,lzcnt") #pragma GCC target("avx2") // CF, CodeChef, HOJ ではコメントアウト #include // #include // using namespace atcoder; using namespace std; using namespace __gnu_pbds; // #include // #include // namespace mp = boost::multiprecision; // using Bint = mp::cpp_int; // using Bdouble = mp::number>; // Bdouble Beps = 0.00000000000000000000000000000001; // 1e-32 // const bool equals(Bdouble a, Bdouble b) { return mp::fabs(a - b) < Beps; } #define pb emplace_back #define int ll #define endl '\n' // #define sqrt __builtin_sqrtl // #define cbrt __builtin_cbrtl // #define hypot __builtin_hypotl using ll = long long; using ld = long double; const ld PI = acosl(-1); const int INF = 1 << 30; const ll INFL = 1LL << 61; const int MOD = 998244353; // const int MOD = 1000000007; const ld EPS = 1e-10; const bool equals(ld a, ld b) { return fabs((a) - (b)) < EPS; } const vector dx = {0, 1, 0, -1, 1, 1, -1, -1, 0}; // → ↓ ← ↑ ↘ ↙ ↖ ↗ 自 const vector dy = {1, 0, -1, 0, 1, -1, -1, 1, 0}; #define EC int struct Edge { int from, to; EC cost; Edge() {} // Edge() : from(-1), to(-1), cost(-1) {} Edge(int to, EC cost) : to(to), cost(cost) {} Edge(int from, int to, EC cost) : from(from), to(to), cost(cost) {} bool operator ==(const Edge &e) { return this->from == e.from && this->to == e.to && this->cost == e.cost; } bool operator !=(const Edge &e) { return this->from != e.from or this->to != e.to or this->cost != e.cost; } bool operator <(const Edge &e) { return this->cost < e.cost; } bool operator >(const Edge &e) { return this->cost > e.cost; } }; chrono::system_clock::time_point start; __attribute__((constructor)) void constructor() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(10); start = chrono::system_clock::now(); } random_device seed_gen; mt19937_64 rng(seed_gen()); uniform_int_distribution dist_x(0, 1e9); struct RNG { unsigned Int() { return dist_x(rng); } unsigned Int(unsigned l, unsigned r) { return dist_x(rng) % (r - l + 1) + l; } ld Double() { return ld(dist_x(rng)) / 1e9; } } rnd; namespace bit_function { using i64 = ll; // using i64 = uint64_t; // bit演算, x==0の場合は例外処理した方がよさそう. 区間は [l, r) i64 lrmask(int l, int r) { return (1LL << r) - (1LL << l); } i64 sub_bit(i64 x, int l, int r) { i64 b = x & ((1LL << r) - (1LL << l)); return b >> l; } // r溢れ可 i64 bit_width(i64 x) { return 64 - __builtin_clzll(x) + (x == 0); } i64 popcount(i64 x) { return __builtin_popcountll(x); } i64 popcount(i64 x, int l, int r) { return __builtin_popcountll(sub_bit(x, l, r)); } i64 unpopcount(i64 x) { return bit_width(x) - __builtin_popcountll(x); } // 最上位bitより下のみ i64 unpopcount(i64 x, int l, int r) { return r - l - __builtin_popcountll(sub_bit(x, l, r)); } // 最上位bitより上も含まれうる bool is_pow2(i64 x) { return __builtin_popcountll(x) == 1; } // xが負のときは常にfalse bool is_pow4(i64 x) { return __builtin_popcountll(x) == 1 && __builtin_ctz(x) % 2 == 0; } //bool is_pow4(ll x) { return __builtin_popcountll(x) == 1 && (x&0x55555555); } int top_bit(i64 x) { return 63 - __builtin_clzll(x);} // 2^kの位 (x > 0) int bot_bit(i64 x) { return __builtin_ctzll(x);} // 2^kの位 (x > 0) int next_bit(i64 x, int k) { // upper_bound x >>= (k + 1); int pos = k + 1; while (x > 0) { if (x & 1) return pos; x >>= 1; pos++; } return -1; } int prev_bit(i64 x, int k) { // k = min(k, bit_width(x)); ? int pos = 0; while (x > 0 && pos < k) { if (x & 1) { if (pos < k) return pos; } x >>= 1; pos++; } return -1; } int kth_bit(i64 x, int k) { // kは1-indexed int pos = 0, cnt = 0; while (x > 0) { if (x & 1) { cnt++; if (cnt == k) return pos; } x >>= 1; pos++; } return -1; } i64 msb(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // mask i64 lsb(i64 x) { return (x & -x); } // mask int countl_zero(i64 x) { return __builtin_clzll(x); } int countl_one(i64 x) { // countl_oneと定義が異なるので注意 i64 ret = 0, k = 63 - __builtin_clzll(x); while (k != -1 && (x & (1LL << k))) { k--; ret++; } return ret; } int countr_zero(i64 x) { return __builtin_ctzll(x); } // x=0のとき64 int countr_one(i64 x) { int ret = 0; while (x & 1) { x >>= 1; ret++; } return ret; } // int countr_one(ll x) { return __builtin_popcount(x ^ (x & -~x)); i64 l_one(i64 x) { // 最上位で連なってる1のmask if (x == 0) return 0; i64 ret = 0, k = 63 - __builtin_clzll(x); while (k != -1 && (x & (1LL << k))) { ret += 1LL << k; k--; } return ret; } int floor_log2(i64 x) { return 63 - __builtin_clzll(x); } // top_bit int ceil_log2(i64 x) { return 64 - __builtin_clzll(x - 1); } i64 bit_floor(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // msb i64 bit_ceil(i64 x) { if (x == 0) return 0; return 1LL << (64 - __builtin_clzll(x - 1)); } i64 rotl(i64 x, int k) { // 有効bit内でrotate. オーバーフロー注意 i64 w = bit_width(x); k %= w; return ((x << k) | (x >> (w - k))) & ((1LL << w) - 1); } // i64 rotl(i64 x, i64 l, i64 m, i64 r) {} i64 rotr(i64 x, int k) { i64 w = bit_width(x); k %= w; return ((x >> k) | (x << (w - k))) & ((1LL << w) - 1); } // i64 rotr(i64 x, i64 l, i64 m, i64 r) {} i64 bit_reverse(i64 x) { // 有効bit内で左右反転 i64 r = 0, w = bit_width(x); for (i64 i = 0; i < w; i++) r |= ((x >> i) & 1) << (w - i - 1); return r; } // i64 bit_reverse(i64 x, int l, int r) {} bool is_palindrome(i64 x) { return x == bit_reverse(x); } bool is_palindrome(i64 x, int l, int r) { i64 b = sub_bit(x, l, r); return b == bit_reverse(b); } i64 concat(i64 a, i64 b) { return (a << bit_width(b)) | b; } // オーバーフロー注意 i64 erase(i64 x, int l, int r) { return x >> r << l | x & ((1LL << l) - 1); } // [l, r) をカット i64 hamming(i64 a, i64 b) { return __builtin_popcountll(a ^ b); } i64 hamming(i64 a, i64 b, int l, int r) { return __builtin_popcountll(sub_bit(a, l, r) ^ sub_bit(b, l, r)); } i64 compcount(i64 x) { return (__builtin_popcountll(x ^ (x >> 1)) + (x & 1)) / 2; } i64 compcount2(i64 x) { return compcount(x & (x >> 1)); } // 長さ2以上の連結成分の個数 i64 adjacount(i64 x) { return __builtin_popcountll(x & (x >> 1)); } // 隣接する1のペアの個数 i64 next_combination(i64 x) { i64 t = x | (x - 1); return (t + 1) | (((~t & -~t) - 1) >> (__builtin_ctzll(x) + 1)); } } using namespace bit_function; namespace util_function { namespace Std = std; __int128_t POW(__int128_t x, int n) { __int128_t ret = 1; assert(n >= 0); if (x == 1 or n == 0) ret = 1; else if (x == -1 && n % 2 == 0) ret = 1; else if (x == -1) ret = -1; else if (n % 2 == 0) { // assert(x < INFL); ret = POW(x * x, n / 2); } else { // assert(x < INFL); ret = x * POW(x, n - 1); } return ret; } int per(int x, int y) { // x = qy + r (0 <= r < y) を満たすq assert(y != 0); if (x >= 0 && y > 0) return x / y; if (x >= 0 && y < 0) return x / y - (x % y < 0); if (x < 0 && y < 0) return x / y + (x % y < 0); return x / y - (x % y < 0); // (x < 0 && y > 0) } int mod(int x, int y) { // x = qy + r (0 <= r < y) を満たすr assert(y != 0); return x - y * per(x, y); } // https://yukicoder.me/problems/no/2781 int floor(int x, int y) { // (ld)x / y 以下の最大の整数 assert(y != 0); if (y < 0) x = -x, y = -y; return x >= 0 ? x / y : (x + 1) / y - 1; } int ceil(int x, int y) { // (ld)x / y 以上の最小の整数 assert(y != 0); if (y < 0) x = -x, y = -y; return x > 0 ? (x - 1) / y + 1 : x / y; } int round(int x, int y) { // (ld)x / y を小数第1位について四捨五入 assert(y != 0); return (x * 2 + y) / (y * 2); } int round(int x, int y, int k) { // (ld)x / y を10^kの位に関して四捨五入 assert(y != 0 && k >= 0); if (k == 0) return (x * 2 + y) / (y * 2); x /= y * POW(10, k - 1); if (x % 10 >= 5) return (x + 10 - x % 10) * POW(10, k - 1); return x * POW(10, k - 1); } int round2(int x, int y) { // 五捨五超入 // 未verify assert(y != 0); if (y < 0) y = -y, x = -x; int z = x / y; if ((z * 2 + 1) * y <= y * 2) z++; return z; } ld round(ld x, int k) { // xを10^kの位に関して四捨五入. // x += EPS; ld d = pow(10, -k); return Std::round(x * d) / d; } ld floor(ld x, int k) { // xを10^kの位に関してflooring // x += EPS; ld d = pow(10, -k); return Std::floor(x * d) / d; // 未verify } ld ceil(ld x, int k) { // xを10^kの位に関してceiling // x -= EPS; ld d = pow(10, -k); return Std::ceil(x * d) / d; // 未verify } // int kth(int x, int y, int k) { // x / yの10^kの位の桁 // } int floor(ld x, ld y) { // 誤差対策TODO assert(!equals(y, 0)); return Std::floor(x / y); // floor(x) = ceil(x - 1) という話も } int ceil(ld x, ld y) { // 誤差対策TODO // ceil(p/q) = -floor(-(p/q))らしい assert(!equals(y, 0)); return Std::ceil(x / y); // ceil(x) = floor(x + 1) } int perl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす q // 未verify. 誤差対策TODO. EPS外してもいいかも。 assert(!equals(y, 0)); if (x >= 0 && y > 0) return Std::floor(x / y)+EPS; if (x >= 0 && y < 0) return -Std::floor(x / fabs(y)); if (x < 0 && y < 0) return Std::floor(x / y) + (x - Std::floor(x/y)*y < -EPS); return Std::floor(x / y) - (x - Std::floor(x/y)*y < -EPS); // (x < 0 && y > 0) } ld modl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす r // 未verify. 誤差対策TODO. -0.0が返りうる。 assert(!equals(y, 0)); if (x >= 0) return x - fabs(y)*fabs(per(x, y)); return x - fabs(y)*floor(x, fabs(y)); } int seisuu(ld x) { return (int)x; } // 整数部分. 誤差対策TODO int modf(ld x) { if (x < 0) return ceill(x); else return floorl(x); } // 正なら+EPS, 負なら-EPSしてから、文字列に直して小数点以下を捨てる? int seisuu(int x, int y) { assert(y != 0); return x / y; } int seisuu(ld x, ld y) { // 誤差対策TODO assert(!equals(y, 0)); return (int)(x / y); } int floor_log(int base, int x) { assert(base >= 2); int ret = 0, now = 1; while (now <= x) { now *= base; if (now <= x) ret++; } return ret; } int ceil_log(int base, int x) { assert(base >= 2); int ret = 0, now = 1; while (now < x) { now *= base; ret++; } return ret; } template pair max(const pair &a, const pair &b) { if (a.first > b.first or a.first == b.first && a.second > b.second) return a; return b; } template pair min(const pair &a, const pair &b) { if (a.first < b.first or a.first == b.first && a.second < b.second) return a; return b; } template bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } template bool chmax(pair &a, const pair &b) { if (a.first < b.first or a.first == b.first && a.second < b.second) { a = b; return true; } return false; } template bool chmin(pair &a, const pair &b) { if (a.first > b.first or a.first == b.first && a.second > b.second) { a = b; return true; } return false; } template T mid(T a, T b, T c) { // 誤差対策TODO return a + b + c - Std::max({a, b, c}) - Std::min({a, b, c}); } template void Sort(T& a, T& b, T& c, Args&... args) { vector vec = {a, b, c, args...}; sort(vec.begin(), vec.end()); auto it = vec.begin(); a = *it++; b = *it++; c = *it++; int dummy[] = { (args = *it++, 0)... }; static_cast(dummy); } template void Sortr(T& a, T& b, T& c, Args&... args) { vector vec = {a, b, c, args...}; sort(vec.rbegin(), vec.rend()); auto it = vec.begin(); a = *it++; b = *it++; c = *it++; int dummy[] = { (args = *it++, 0)... }; static_cast(dummy); } template void sort(vector &A, vector &B) { vector> P(A.size()); for (int i = 0; i < A.size(); i++) P[i] = {A[i], B[i]}; sort(P.begin(), P.end()); for (int i = 0; i < A.size(); i++) A[i] = P[i].first, B[i] = P[i].second; } istream &operator >>(istream &is, __int128_t& x) { string S; is >> S; __int128_t ret = 0; int f = 1; if (S[0] == '-') f = -1; for (int i = 0; i < S.length(); i++) if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0'; x = ret * f; return (is); } ostream &operator <<(ostream &os, __int128_t x) { ostream::sentry s(os); if (s) { __uint128_t tmp = x < 0 ? -x : x; char buffer[128]; char *d = end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (x < 0) { --d; *d = '-'; } int len = end(buffer) - d; if (os.rdbuf()->sputn(d, len) != len) os.setstate(ios_base::badbit); } return os; } __int128_t sto128(const string &S) { __int128_t ret = 0; int f = 1; if (S[0] == '-') f = -1; for (int i = 0; i < S.length(); i++) if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0'; return ret * f; } __int128_t gcd(__int128_t a, __int128_t b) { return b ? gcd(b, a % b) : a; } __int128_t lcm(__int128_t a, __int128_t b) { return a / gcd(a, b) * b; // lcmが__int128_tに収まる必要あり } string to_string(double x, int k) { // 小数第k+1を四捨五入して小数第k位までを出力 // 切り捨てがほしい場合は to_string(x, k+1) として pop_back() すればよい? ostringstream os; os << fixed << setprecision(k) << x; return os.str(); } string to_string(__int128_t x) { string ret = ""; if (x < 0) { ret += "-"; x *= -1; } while (x) { ret += (char)('0' + x % 10); x /= 10; } reverse(ret.begin(), ret.end()); return ret; } string to_string(char c) { string s = ""; s += c; return s; } } using namespace util_function; struct custom_hash { static uint64_t splitmix64(uint64_t x) { x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } }; template size_t HashCombine(const size_t seed,const T &v) { return seed^(hash()(v)+0x9e3779b9+(seed<<6)+(seed>>2)); } template struct hash>{ size_t operator()(const pair &keyval) const noexcept { return HashCombine(hash()(keyval.first), keyval.second); } }; template struct hash>{ size_t operator()(const vector &keyval) const noexcept { size_t s=0; for (auto&& v: keyval) s=HashCombine(s,v); return s; } }; template struct HashTupleCore{ template size_t operator()(const Tuple &keyval) const noexcept{ size_t s=HashTupleCore()(keyval); return HashCombine(s,get(keyval)); } }; template <> struct HashTupleCore<0>{ template size_t operator()(const Tuple &keyval) const noexcept{ return 0; } }; template struct hash>{ size_t operator()(const tuple &keyval) const noexcept { return HashTupleCore>::value>()(keyval); } }; template class Compress { public: int sz = 0; vector uniqV; Compress() {} template Compress(const Vecs&... vecs) { (uniqV.insert(uniqV.end(), vecs.begin(), vecs.end()), ...); sort(uniqV.begin(), uniqV.end()); uniqV.erase(unique(uniqV.begin(), uniqV.end()), uniqV.end()); sz = uniqV.size(); } vector zip(const vector &V) { vector ret(V.size()); for (int i = 0; i < V.size(); i++) { ret[i] = encode(V[i]); } return ret; } vector unzip(const vector &V) { vector ret(V.size()); for (int i = 0; i < V.size(); i++) { ret[i] = decode(V[i]); } return ret; } int size() { return sz; } int encode(T x) { auto it = lower_bound(uniqV.begin(), uniqV.end(), x); return it - uniqV.begin(); } T decode(int x) { if (x < 0 or x >= uniqV.size()) return -1; // xが範囲外の場合 return uniqV[x]; } }; class UnionFind { public: UnionFind() = default; UnionFind(int N) : par(N), sz(N, 1) { iota(par.begin(), par.end(), 0); } int root(int x) { if (par[x] == x) return x; return (par[x] = root(par[x])); } bool unite(int x, int y) { int rx = root(x); int ry = root(y); if (rx == ry) return false; if (sz[rx] < sz[ry]) swap(rx, ry); sz[rx] += sz[ry]; par[ry] = rx; return true; } bool issame(int x, int y) { return (root(x) == root(y)); } int size(int x) { return sz[root(x)]; } vector> groups(int N) { vector> G(N); for (int x = 0; x < N; x++) { G[root(x)].push_back(x); } G.erase( remove_if(G.begin(), G.end(), [&](const vector& V) { return V.empty(); }), G.end()); return G; } private: vector par, sz; }; template struct BIT { int N; // 要素数 vector bit[2]; // データの格納先 BIT(int N_, int x = 0) { N = N_ + 1; bit[0].assign(N, 0); bit[1].assign(N, 0); if (x != 0) { for (int i = 0; i < N; i++) add(i, x); } } BIT(const vector &A) { N = A.size() + 1; bit[0].assign(N, 0); bit[1].assign(N, 0); for (int i = 0; i < (int)A.size(); i++) add(i, A[i]); } void add_sub(int p, int i, T x) { while (i < N) { bit[p][i] += x; i += (i & -i); } } void add(int l, int r, T x) { add_sub(0, l + 1, -x * l); add_sub(0, r + 1, x * r); add_sub(1, l + 1, x); add_sub(1, r + 1, -x); } void add(int i, T x) { add(i, i + 1, x); } T sum_sub(int p, int i) { T ret = 0; while (i > 0) { ret += bit[p][i]; i -= (i & -i); } return ret; } T sum(int i) { return sum_sub(0, i) + sum_sub(1, i) * i; } T sum(int l, int r) { return sum(r) - sum(l); } T get(int i) { return sum(i, i + 1); } void set(int i, T x) { T s = get(i); add(i, -s + x); } }; template class Modint { public: int val = 0; Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; } Modint(const Modint &r) { val = r.val; } Modint operator -() { return Modint(-val); } // 単項 Modint operator +(const Modint &r) { return Modint(*this) += r; } Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; } Modint operator -(const Modint &r) { return Modint(*this) -= r; } Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; } Modint operator *(const Modint &r) { return Modint(*this) *= r; } Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; } Modint operator /(const Modint &r) { return Modint(*this) /= r; } Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; } Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置 Modint operator ++(signed) { ++*this; return *this; } // 後置 Modint& operator --() { val--; if (val < 0) val += mod; return *this; } Modint operator --(signed) { --*this; return *this; } Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; } Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; } Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; } Modint &operator -=(const int &q) { Modint r(q); if (val < r.val) val += mod; val -= r.val; return *this; } Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; } Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; } Modint &operator /=(const Modint &r) { int a = r.val, b = mod, u = 1, v = 0; while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);} val = val * u % mod; if (val < 0) val += mod; return *this; } Modint &operator /=(const int &q) { Modint r(q); int a = r.val, b = mod, u = 1, v = 0; while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);} val = val * u % mod; if (val < 0) val += mod; return *this; } bool operator ==(const Modint& r) { return this -> val == r.val; } bool operator <(const Modint& r) { return this -> val < r.val; } bool operator >(const Modint& r) { return this -> val > r.val; } bool operator !=(const Modint& r) { return this -> val != r.val; } friend istream &operator >>(istream &is, Modint& x) { int t; is >> t; x = t; return (is); } friend ostream &operator <<(ostream &os, const Modint& x) { return os << x.val; } }; using mint = Modint; mint modpow(const mint &x, int n) { if (n < 0) return (mint)1 / modpow(x, -n); // 未verify assert(n >= 0); if (n == 0) return 1; mint t = modpow(x, n / 2); t = t * t; if (n & 1) t = t * x; return t; } int modpow(__int128_t x, int n, int mod) { if (n == 0 && mod == 1) return 0; assert(n >= 0 && mod > 0); // TODO: n <= -1 __int128_t ret = 1; while (n > 0) { if (n % 2 == 1) ret = ret * x % mod; x = x * x % mod; n /= 2; } return ret; } // int modinv(__int128_t x, int mod) { // // assert(mod > 0); // // assert(x > 0); // if (x == 1 or x == 0) return 1; // return mod - modinv(mod % x, mod) * (mod / x) % mod; // } vector _fac, _finv, _inv; void COMinit(int N) { _fac.resize(N + 1); _finv.resize(N + 1); _inv.resize(N + 1); _fac[0] = _fac[1] = 1; _finv[0] = _finv[1] = 1; _inv[1] = 1; for (int i = 2; i <= N; i++) { _fac[i] = _fac[i-1] * mint(i); _inv[i] = -_inv[MOD % i] * mint(MOD / i); _finv[i] = _finv[i - 1] * _inv[i]; } } mint FAC(int N) { if (N < 0) return 0; return _fac[N]; } mint FACinv(int N) { if (N < 0) return 0; return _finv[N]; } mint COM(int N, int K) { if (N < K) return 0; if (N < 0 or K < 0) return 0; return _fac[N] * _finv[K] * _finv[N - K]; } mint COMinv(int N, int K) { if (N < K) return 0; if (N < 0 or K < 0) return 0; return _finv[N] * _fac[K] * _fac[N - K]; } mint MCOM(const vector &V) { int N = 0; for (int i = 0; i < V.size(); i++) N += V[i]; mint ret = _fac[N]; for (int i = 0; i < V.size(); i++) ret *= _finv[V[i]]; return ret; } mint PERM(int N, int K) { if (N < K) return 0; if (N < 0 or K < 0) return 0; return _fac[N] * _finv[N - K]; } mint NHK(int N, int K) { // initのサイズに注意 if (N == 0 && K == 0) return 1; return COM(N + K - 1, K); } #pragma endregion struct Point { double x, y; Point() {} Point(double x, double y) : x(x), y(y) {} Point operator+(const Point &p) const { return Point(x + p.x, y + p.y); } Point operator-(const Point &p) const { return Point(x - p.x, y - p.y); } Point operator*(const double &k) const { return Point(x * k, y * k); } Point operator/(const double &k) const { return Point(x / k, y / k); } friend istream& operator>>(istream &is, Point &p) { is >> p.x >> p.y; return is; } friend ostream& operator<<(ostream& os, const Point& p) { os << p.x << " " << p.y; return os; } bool operator==(const Point &p) const { return (fabs(x - p.x) < EPS && fabs(y - p.y) < EPS); } // bool operator!=(const Point &p) const { return (fabs(x - p.x) > EPS or fabs(y - p.y) > EPS); } bool operator<(const Point &p) const { return (x != p.x ? x < p.x : y < p.y); } // (x, y) の辞書順比較 double norm() { return x*x + y*y; } double abs() { return sqrt(norm()); } }; typedef Point Vector; int sign(double x) { return x < -EPS ? -1 : x > EPS; } // -1(負)/0/1(正) double norm(Vector a) { return a.x*a.x + a.y*a.y; } double abs(Vector a) { return sqrt(norm(a)); } double dist(Point a, Point b) { return sqrt(norm(a - b)); } double dot(Vector a, Vector b) { return a.x*b.x + a.y*b.y; } double cross(Vector a, Vector b) { return a.x*b.y - a.y*b.x; } Vector normalize(Vector a) { return a / abs(a); } // 長さを1に正規化 double rad_to_deg(double rad) { return rad * 180. / PI; } double deg_to_rad(double deg) { return deg * PI / 180.; } double angle(Vector a, Vector b) { return acos(dot(a, b) / (abs(a) * abs(b))); } // ベクトル間の角度(rad) double arg(Vector p) { return atan2(p.y, p.x); } // 偏角(rad) Point polar(double r, double rad) { return {cos(rad)*r, sin(rad)*r}; } // 極座標 to 直交座標 void arg_sort(vector &P) { auto sign_ = [&](const Point &p) -> int { if (abs(p.x) <= EPS && abs(p.y) <= EPS) return 0; else if (p.y < -EPS or abs(p.y) <= EPS && p.x > EPS) return -1; else return 1; }; auto comp = [&](const Point &p, const Point &q) -> bool { return (sign_(p) != sign_(q) ? sign_(p) < sign_(q) : p.x * q.y - p.y * q.x > 0); }; sort(P.begin(), P.end(), comp); } Vector orth(Vector p) { return {-p.y, p.x}; } Point rot90(Point p) { return {-p.y, p.x}; } Point rot180(Point p) { return {-p.x, -p.y}; } Point rot(Point p, double theta) { return {cos(theta)*p.x - sin(theta)*p.y, sin(theta)*p.x + cos(theta)*p.y}; } Point rot(Point p, Point c, double theta) { // 点pを、点cを中心として反時計回りにtheta(rad)回転(p != c の必要) double q = arg(p - c) + theta; return c + Point{cos(q)*abs(p - c), sin(q)*abs(p - c)}; } bool is_lattice(Point p) { return equals(abs(p.x - round(p.x)), 0.) && equals(abs(p.y - round(p.y)), 0.); } // 未 bool is_lattice(double x, double y) { return equals(abs(x - round(x)), 0.) && equals(abs(y - round(y)), 0.); } bool is_parallel(Vector a, Vector b) { return equals(cross(a, b), 0.); } bool is_orthogonal(Vector a, Vector b) { return equals(dot(a, b), 0.); } int ccw(Point p1, Point p2, Point p3) { Vector a = p2 - p1, b = p3 - p1; if (cross(a, b) > EPS) return 1; // 反時計 if (cross(a, b) < -EPS) return -1; // 時計 if (dot(a, b) < -EPS) return 2; // 真逆 if (a.norm() < b.norm()) return -2; // Bの上にA return 0; // Aの上にB } struct Circle { Point c; double r; Circle() {} Circle(Point c, double r) : c(c), r(r) {} double area() { return PI * r * r; } bool operator == (const Circle &C) { return c == C.c && equals(r, C.r); } friend istream& operator>>(istream &is, Circle &C) { is >> C.c >> C.r; return is; } }; typedef vector Polygon; // TODO : angle(L1, L2), rot(L, p, theta), rot(S, p, theta), reflection(L, S), reflection(L, C), reflection(L, P) struct Line { Point p1, p2; Line() {} Line(Point p1, Point p2) : p1(p1), p2(p2) {} // Ax + By = C Line(double A, double B, double C) { if (equals(A, 0)) p1 = Point(0, C / B), p2 = Point(1, C / B); else if (equals(B, 0)) p1 = Point(C / A, 0), p2 = Point(C / A, 1); else p1 = Point(0, C / B), p2 = Point(C / A, 0); } // tuple get_abc() {} friend istream& operator>>(istream& is, Line& l) { is >> l.p1 >> l.p2; return is; } bool operator==(const Line& l) const { if (abs(cross(p1 - l.p1, l.p2 - l.p1)) > EPS) return false; if (abs(cross(p2 - l.p1, l.p2 - l.p1)) > EPS) return false; return true; } // bool operator<(const Line& l) const { return (l.p2.y - l.p1.y) * (p2.x - p1.x) < (l.p2.x - l.p1.x) * (p2.y - p1.y); } }; struct Segment { Point p1, p2; Segment() {} Segment(Point p1, Point p2) : p1(p1), p2(p2) {} friend istream& operator>>(istream& is, Segment& s) { is >> s.p1 >> s.p2; return is; } // 未 bool operator==(const Segment& s) const { return (abs(p1 - s.p1) < EPS && abs(p2 - s.p2) < EPS); } bool operator!=(const Segment& s) const { return (abs(p1 - s.p1) > EPS or abs(p2 - s.p2) > EPS); } }; bool on_line(Line L, Point p) { if (sign(cross(L.p1 - p, L.p2 - p)) != 0) return false; return true; } bool on_segment(Segment S, Point p) { if (sign(cross(S.p1 - p, S.p2 - p)) != 0) return false; if (sign(dot(S.p1 - p, S.p2 - p)) > 0) return false; return true; } int Location(Line L, Point p) { return ccw(L.p1, p, L.p2); } // -1, 1, else Point projection(Line L, Point p) { Vector base = L.p2 - L.p1; double r = dot(p - L.p1, base) / base.norm(); return L.p1 + base * r; } Point projection(Segment S, Point p) { // 未 Vector base = S.p2 - S.p1; double r = dot(p - S.p1, base) / base.norm(); Point proj = S.p1 + base * r; if (r < 0.) return S.p1; if (r > 1.) return S.p2; return proj; } Point reflection(Line L, Point p) { return p + (projection(L, p) - p) * 2.; } bool is_parallel(Line L1, Line L2) { return is_parallel(L1.p2 - L1.p1, L2.p2 - L2.p1); } bool is_parallel(Line L, Segment S) { return is_parallel(L.p2 - L.p1, S.p2 - S.p1); } bool is_parallel(Segment S, Line L) { return is_parallel(S.p2 - S.p1, L.p2 - L.p1); } bool is_parallel(Segment S1, Segment S2) { return is_parallel(S1.p2 - S1.p1, S2.p2 - S2.p1); } bool is_orthogonal(Line L1, Line L2) { return is_orthogonal(L1.p2 - L1.p1, L2.p2 - L2.p1); } bool is_orthogonal(Line L, Segment S) { return is_orthogonal(L.p2 - L.p1, S.p2 - S.p1); } bool is_orthogonal(Segment S, Line L) { return is_orthogonal(S.p2 - S.p1, L.p2 - L.p1); } bool is_orthogonal(Segment S1, Segment S2) { return is_orthogonal(S1.p2 - S1.p1, S2.p2 - S2.p1); } bool is_same_line(Line L1, Line L2) { if (abs(cross(L1.p1 - L2.p1, L2.p2 - L2.p1)) > EPS) return false; if (abs(cross(L1.p2 - L2.p1, L2.p2 - L2.p1)) > EPS) return false; return true; } // bool is_same_line(Line L1, Segment S2) { return is_same_line(L1.p2 - L1.p1, S2.p2 - S2.p1); } // bool is_same_line(Segment S1, Line S2) { return is_same_line(S1.p2 - S1.p1, S2.p2 - S2.p1); } // bool is_same_line(Segment S1, Segment S2) { return is_same_line(S1.p2 - S1.p1, S2.p2 - S2.p1); } bool intersect_LL(Line L1, Line L2) { return !is_parallel(L1, L2); } // bool intersect_LS(Line L, Segment S) { // return cross(L.p2 - L.p1, S.p1 - L.p1) * cross(L.p2 - L.p1, S.p2 - L.p1) < EPS; // } bool intersect_SS(Segment S1, Segment S2) { return (ccw(S1.p1, S1.p2, S2.p1) * ccw(S1.p1, S1.p2, S2.p2) <= 0 && ccw(S2.p1, S2.p2, S1.p1) * ccw(S2.p1, S2.p2, S1.p2) <= 0); } vector cross_point_LL(Line L1, Line L2) { auto a = cross(L2.p2 - L2.p1, L1.p2 - L1.p1); auto b = cross(L1.p1 - L2.p1, L1.p2 - L1.p1); if ( sign(a)) return {L2.p1 + (L2.p2 - L2.p1)*(b/a)}; // 1点で交わる if (!sign(b)) return {L2.p1, L2.p2}; // 同じ直線(交点は無限個) return {}; // 異なる直線で平行 } vector cross_point_LS(Line L1, Segment S1) { auto a = cross(S1.p2 - S1.p1, L1.p2 - L1.p1); auto b = cross(L1.p1 - S1.p1, L1.p2 - L1.p1); if (a < 0) { a *= -1; b *= -1; } if (sign(b) < 0 or sign(a - b) < 0) return {}; // 交点なし if (sign(a) != 0) return {S1.p1 + (S1.p2 - S1.p1)*(b/a)}; // 交差する if (sign(b) == 0) return {S1.p1, S1.p2}; // 線分が直線に含まれる(交点は無限個) return {}; // 異なる線で平行 } vector cross_point_SS(Segment S1, Segment S2) { auto a = cross(S1.p2 - S1.p1, S2.p2 - S2.p1); auto b = cross(S2.p1 - S1.p1, S2.p2 - S2.p1); auto c = cross(S1.p2 - S1.p1, S1.p1 - S2.p1); if (a < 0) { a = -a; b = -b; c = -c; } if (sign(b) < 0 or sign(a-b) < 0 or sign(c) < 0 or sign(a-c) < 0) return {}; // 交差しない if (sign(a) != 0) return {S1.p1 + (S1.p2 - S1.p1)*(b/a)}; // 平行でなく交差する vector ret; // 同一直線上にあり、交差する auto insert_if_possible = [&](Point p) { for (auto q : ret) if (sign(dot(p - q, p - q)) == 0) return; ret.emplace_back(p); }; if (sign(dot(S1.p1-S2.p1, S1.p2-S2.p1)) <= 0) insert_if_possible(S2.p1); if (sign(dot(S1.p1-S2.p2, S1.p2-S2.p2)) <= 0) insert_if_possible(S2.p2); if (sign(dot(S2.p1-S1.p1, S2.p2-S1.p1)) <= 0) insert_if_possible(S1.p1); if (sign(dot(S2.p1-S1.p2, S2.p2-S1.p2)) <= 0) insert_if_possible(S1.p2); return ret; } double dist_Lp(Line L, Point p) { return abs(cross(L.p2 - L.p1, p - L.p1) / abs(L.p2 - L.p1)); } double dist_Sp(Segment S, Point p) { if (dot(S.p2 - S.p1, p - S.p1) < 0.) return abs(p - S.p1); if (dot(S.p1 - S.p2, p - S.p2) < 0.) return abs(p - S.p2); return dist_Lp(Line{S.p1, S.p2}, p); } double dist_LS(Segment S, Line L) { if (cross_point_LS(L, S).size()) return 0; // if (intersect_LS(L, S).size()) return 0; return min(dist_Lp(L, S.p1), dist_Lp(L, S.p2)); } double dist_SS(Segment S1, Segment S2) { if (intersect_SS(S1, S2)) return 0.; return min({dist_Sp(S1, S2.p1), dist_Sp(S1, S2.p2), dist_Sp(S2, S1.p1), dist_Sp(S2, S1.p2)}); } // TODO : reflect(Circle C, Line L), 点pからC上の点の最遠点, // TODO : reflect(Circle C, Line L), 点pからC上の点の最遠点, Circle three_point_circle(Point p, Point q, Point r) { // 3点を通る円 Point u = orth(q - p), v = r - p; Point o = (p + q + u*dot(r - q, v) / dot(u, v)) / 2; return {o, norm(p - o)}; } // (OUT, ON, IN) int contains(Circle C, Point p) { if (equals(abs(C.c - p), C.r)) return 1; // ON if (abs(C.c - p) < C.r) return 2; // IN return 0; // OUT } Point closet_point(Circle C, Point p) { // pがCの内部の場合は? Point v = p - C.c; return C.c + v * C.r / norm(v); // return C.c + v * C.r / abs(v); } // closet_point(C, L), closet_point(C, S) はライブラリ内にあり(未verify) double dist_Cp(Circle C, Point p) { return max(abs(C.c - p) - C.r, 0.); } double dist_Cp2(Circle C, Point p) { // 輪っかと点の距離 return abs(abs(C.c - p) - C.r); } vector cross_point_CL(Circle C, Line L) { Point u = L.p2 - L.p1, v = L.p1 - C.c; auto a = dot(u, u), b = dot(u, v)/a, t = (dot(v, v) - C.r*C.r)/a; auto det = b*b - t; if (sign(det) < 0) return {}; // 交差しない if (sign(det) == 0) return {L.p1 - u*b}; // 1点で接する return {L.p1 - u*(b + sqrt(det)), // 2点で交差 L.p1 - u*(b - sqrt(det))}; } //----------------------------------------------------------------------------- // intersection of Segment and Circle // number of points: // 0 ==> no cross_point_CL // 1 ==> touch 外接? 内接する場合は? // 2 ==> contained 内部に完全に含まれる? // 3 ==> penetrating single side 端点の一方を内部に含み、もう一方を踏まない // 4 ==> penetrating both sides 2点で交わる // sorted from S.p1 to S.p2; usually, one would use ans[0] and ans.back(). (気を付ける) //----------------------------------------------------------------------------- vector cross_point_CS(Circle C, Segment S) { // 候補のコードが 円/円と線 にあり Point u = S.p2 - S.p1, v = S.p1 - C.c; auto a = dot(u, u), b = dot(u, v)/a, t = (dot(v, v) - C.r*C.r)/a; auto det = b*b - t; if (sign(det) < 0) return {}; auto t1 = -b - sqrt(det), t2 = -b + sqrt(det); vector ps; auto insert_if_possible = [&](Point p) { for (auto q : ps) if (sign(dot(p - q, p - q)) == 0) return; ps.emplace_back(p); }; if (sign(C.r - norm(S.p1 - C.c)) >= 0) insert_if_possible(S.p1); if (sign(t1) >= 0 && sign(1 - t1) >= 0) insert_if_possible(S.p1 + u*t1); if (sign(t2) >= 0 && sign(1 - t2) >= 0) insert_if_possible(S.p1 + u*t2); if (sign(C.r - norm(S.p2 - C.c)) >= 0) insert_if_possible(S.p2); return ps; } double dist_CL(Circle C, Line L) { // (未) if (cross_point_CL(C, L).size()) return 0; return dist_Lp(L, C.c) - C.r; } double dist_CL2(Circle C, Line L) { // 輪っかと直線の距離(未) return abs(dist_Lp(L, C.c) - C.r); } double dist_CS(Circle C, Segment S) { // (未) if (cross_point_CS(C, S).size()) return 0; return dist_Sp(S, C.c) - C.r; } double dist_CS2(Circle C, Segment S) { // 輪っかと線分の距離(未) return abs(dist_Sp(S, C.c) - C.r); } // 0:非交差, 1:外接, 2:交差 int count_intersections_CL(Circle C, Segment S) { // 未 double d = dist_Sp(S, C.c); if (equals(d, C.r)) return 1; if (d > C.r + EPS) return 0; return 2; } // 0:非交差(外側), 1:真に内包, 2:1点で内接, 3:2点で内接, // 4:外接(接線), 5:外接(接点) (点で接するが延長すると接線となる場合も5) // 6:1回交差, 7:2回交差 int relation_CS(Circle C, Segment S) { // 未 int a = contains(C, S.p1); int b = contains(C, S.p2); if (a == 2 && b == 2) return 1; if (a == 1 && b == 1) return 3; if (a && b) return 2; if (a or b) return 5; if (!a && b or a && !b) return 6; double d = dist_Sp(S, C.c); if (equals(d, C.r)) return 4; if (d > C.r + EPS) return 0; return 7; } int count_intersections_CS(Circle C, Segment S) { // 交点の個数 (未) int x = relation_CS(C, S); if (x == 7 or x == 3) return 2; if (x == 0 or x == 1) return 0; return 1; } // (-3, -2, -1, 0, 1, 2, 3) // (非交差, 外包, 外接, 交差, 内接, 内包, 一致) int relation_CC(Circle C1, Circle C2) { if (C1 == C2) return 3; // 一致 if (C1.r < C2.r) swap(C1, C2); double d = abs(C1.c - C2.c); double r = C1.r + C2.r; if (equals(d, r)) return -1; // 外接 if (d > r) return -3; // 非交差 if (equals(d + C2.r, C1.r)) return 1; // 内接 if (d + C2.r < C1.r) return 2; // 内包(外包TODO) return 0; // 交差 } int count_intersections_CC(Circle C1, Circle C2) { // 交点の個数 int x = relation_CC(C1, C2); if (x == 3) return INF; if (x == 0) return 2; if (x == -1 or x == 1) return 1; return 0; } // https://www.acmicpc.net/problem/1002 int count_common_tangents_CC(Circle C1, Circle C2) { // 共通接戦の本数 int x = relation_CC(C1, C2); if (x == 3) return INF; if (x == -3) return 4; if (x == -1) return 3; if (x == 0) return 2; if (x == 1) return 1; return 0; } // https://onlinejudge.u-aizu.ac.jp/services/ice/?problemId=CGL_1_A vector cross_point_CC(Circle C1, Circle C2) { if (C1.r < C2.r) swap(C1, C2); double g = dot(C1.c - C2.c, C1.c - C2.c); if (sign(g) == 0) { if (sign(C1.r - C2.r) != 0) return {}; return {{C1.c.x + C1.r, C1.c.y}, {C1.c.x, C1.c.y + C1.r}, {C1.c.x - C1.r, C1.c.y}}; } int inner = sign(g - (C1.r - C2.r)*(C1.r - C2.r)); int outer = sign(g - (C1.r + C2.r)*(C1.r - C2.r)); if (inner < 0 or outer > 0) return {}; if (inner == 0) return {(C2.c*C1.r - C1.c*C2.r)/(C1.r - C2.r)}; if (outer == 0) return {(C2.c*C1.r + C1.c*C2.r)/(C1.r + C2.r)}; double eta = (C1.r*C1.r - C2.r*C2.r + g)/(g*2); double mu = sqrt(C1.r*C1.r/g - eta*eta); Point q = C1.c + (C2.c - C1.c)*eta, v = orth(C2.c - C1.c)*mu; return {q + v, q - v}; } double dist_CC(Circle C1, Circle C2) { if (relation_CC(C1, C2) != -3) return 0; return abs(C1.c - C2.c) - C1.r - C2.r; } double dist_CC2(Circle C1, Circle C2) { // 輪っかと輪っかの距離 int t = relation_CC(C1, C2); if (t == -1 or t == 0 or t == 1 or t == 3) return 0; // 内接, 交差, 外接, 一致 if (t == -3) return abs(C1.c - C2.c) - C1.r - C2.r; // 非交差 return abs(C1.r - C2.r) - abs(C1.c - C2.c); // 内包 } vector tangentCp(Circle C, Point p) { return cross_point_CC(C, Circle(p, sqrt(norm(C.c - p) - C.r * C.r))); } vector tangentCC(Circle C1, Circle C2) { vector ls; if (C1.r < C2.r) swap(C1, C2); double g = abs(C1.c - C2.c); if (equals(g, 0.)) return ls; Point u = (C2.c - C1.c) / g; Point v = Point(-u.y, u.x); for (int s = 1; s >= -1; s -= 2) { double h = (C1.r + C2.r * s) / g; if (equals(1., h * h)) ls.push_back(Line(C1.c + u * C1.r, C1.c + (u + v) * C1.r)); else if (1. - h * h > 0.) { Point uu = u * h, vv = v * sqrt(1. - h * h); ls.push_back(Line(C1.c + (uu + vv) * C1.r, C2.c - (uu + vv) * C2.r * s)); ls.push_back(Line(C1.c + (uu - vv) * C1.r, C2.c - (uu - vv) * C2.r * s)); } } return ls; } // 偏角ソート忘れに注意 // TODO : 一番上にある頂点のindex(二分探索) // intersect_PL_convex, cross_point_PS_convex, dist_PS_convex, cross_point_PP_convex // intersect_PL, cross_point_PL, cross_point_PS, tangent_Pp, dist_Pp, dist_PL, dist_PS, dist_PP, maximum_dist_PP, cross_point_PP // 多角形の和, 共通部分, 差, 対称差 double perimeter(const Polygon &P) { double ret = 0; int N = P.size(); for (int i = 0; i < N; i++) ret += dist(P[i], P[(i + 1) % N]); return ret; } double area(const Polygon &P) { // 符号付き double ret = 0; for (int i = 0; i < (int)P.size(); i++) { ret += cross(P[i], P[(i + 1) % P.size()]); } return ret / 2.; } Polygon to_rect(Point p1, Point p2) { return {p1, Point(p2.x, p1.y), p2, Point(p1.x, p2.y)}; } void sort_ccw_convex(Polygon &P) { int N = P.size(); double cx = 0, cy = 0; // 重心に対して偏角ソート for (const Point &p : P) { cx += p.x; cy += p.y; } cx /= N; cy /= N; sort(P.begin(), P.end(), [&](const Point &a, const Point &b) { auto sign_ = [&](const Point &p) -> int { if (abs(p.x - cx) <= EPS && abs(p.y - cy) <= EPS) return 0; else if (p.y - cy < -EPS or abs(p.y - cy) <= EPS && p.x - cx > EPS) return -1; else return 1; }; return (sign_(a) != sign_(b) ? sign_(a) < sign_(b) : (a.x - cx) * (b.y - cy) - (a.y - cy) * (b.x - cx) > 0); }); } // 弱 https://yukicoder.me/problems/no/55 // boundaryは周上の点を含めるか否か. 基本的にはfalseにする。整数座標ok. Polygon ConvexHull(Polygon P, bool boundary = false) { int N = P.size(); if (N == 0) return {}; sort(P.begin(), P.end(), [](const Point &a, const Point &b) { return (a.y != b.y ? a.y < b.y : a.x < b.x); }); P.erase(unique(P.begin(), P.end()), P.end()); // 同じ座標の点を複数与えられる場合 N = P.size(); if (N == 1) return P; // 1点からなる場合(定義による) Polygon P2(2 * N); int k = 0; double e = boundary ? -EPS : +EPS; for (int i = 0; i < N; i++) { while (k > 1 && cross(P2[k - 1] - P2[k - 2], P[i] - P2[k - 1]) < e) k--; P2[k++] = P[i]; } for (int i = N - 2, t = k; i >= 0; i--) { while (k > t && cross(P2[k - 1] - P2[k - 2], P[i] - P2[k - 1]) < e) k--; P2[k++] = P[i]; } P2.resize(k - 1); return P2; } bool is_convex(const Polygon &P) { int N = P.size(); for (int i = 0; i < N; i++) { if (ccw(P[(i - 1 + N) % N], P[i], P[(i + 1) % N]) == -1) return false; } return true; } int orientation(Point a, Point b, Point c) { return sign(cross(b - a, c - a)); } // IN:2, ON:1, OUT:0 int contains(const Polygon &P, Point p) { // 凸性不要 int N = P.size(); bool x = false; for (int i = 0; i < N; i++) { Point a = P[i] - p; Point b = P[(i + 1) % N] - p; if (abs(cross(a, b)) < EPS && dot(a, b) < EPS) return 1; if (a.y > b.y) swap(a, b); if (a.y < EPS && EPS < b.y && cross(a, b) > EPS) x = !x; } return (x ? 2 : 0); } int contains_convex(const Polygon &P, Point p) { // O(logN) int N = P.size(); int a = orientation(P[0], P[1], p), b = orientation(P[0], P[N - 1], p); if (a < 0 || b > 0) return 1; int l = 1, r = N - 1; while (l + 1 < r) { int mid = l + r >> 1; if (orientation(P[0], P[mid], p) >= 0) l = mid; else r = mid; } int k = orientation(P[l], P[r], p); if (k <= 0) return -k; if (l == 1 && a == 0) return 0; if (r == N - 1 && b == 0) return 0; return 2; } bool intersect_PS(const Polygon &P, Segment S) { int N = P.size(); for (int i = 0; i < N; i++) { Segment S2(P[i], P[(i + 1) % N]); if (intersect_SS(S, S2)) return true; } return false; } bool intersect_PS_convex(const Polygon &P, Segment S) { int a = contains_convex(P, S.p1); int b = contains_convex(P, S.p2); return (a == 1 or b == 1 or a != b); } bool intersect_PP(const Polygon &P1, const Polygon &P2) { // O(NM) int N = P1.size(); for (int i = 0; i < N; i++) { Segment S2(P1[i], P1[(i + 1) % N]); if (intersect_PS(P2, S2)) return true; } return false; } bool intersect_PP_convex(const Polygon &P1, const Polygon &P2) { // O(N logM) int N = P1.size(); for (int i = 0; i < N; i++) { Segment S2(P1[i], P1[(i + 1) % N]); if (intersect_PS_convex(P2, S2)) return true; } return false; } // 凸多角形Pの頂点であって、点pとのdotが最大となるもののindex // top - upper right vertex // for minimum dot product negate p and return -dot(p, p[id]) int extreme_vertex(const Polygon &P, Point p, int top) { // O(log n) int N = P.size(); if (N == 1) return 0; double ans = dot(P[0], p); int id = 0; if (dot(P[top], p) > ans) ans = dot(P[top], p), id = top; int l = 1, r = top - 1; while (l < r) { int mid = l + r >> 1; if (dot(P[mid + 1], p) >= dot(P[mid], p)) l = mid + 1; else r = mid; } if (dot(P[l], p) > ans) ans = dot(P[l], p), id = l; l = top + 1, r = N - 1; while (l < r) { int mid = l + r >> 1; if (dot(P[(mid + 1) % N], p) >= dot(P[mid], p)) l = mid + 1; else r = mid; } l %= N; if (dot(P[l], p) > ans) ans = dot(P[l], p), id = l; return id; } // 凸多角形P, 直線L, Pの一番上の頂点(?) // 交差する辺のindexを返す? // it returns the indices of the edges of the polygon that are intersected by the line // so if it returns i, then the line intersects the edge (P[i], P[(i + 1) % n]) vector cross_point_PL_convex(const Polygon &P, Line L, int top) { Point a = L.p1, b = L.p2; int end_a = extreme_vertex(P, orth(a - b), top); int end_b = extreme_vertex(P, orth(b - a), top); auto cmp_l = [&](int i) { return orientation(a, P[i], b); }; if (cmp_l(end_a) < 0 or cmp_l(end_b) > 0) return {}; // no intersection array ret; for (int i = 0; i < 2; i++) { int lo = end_b, hi = end_a, n = P.size(); while ((lo + 1) % n != hi) { int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n; (cmp_l(m) == cmp_l(end_b) ? lo : hi) = m; } ret[i] = (lo + !cmp_l(hi)) % n; swap(end_a, end_b); } if (ret[0] == ret[1]) return {ret[0]}; // touches the vertex ret[0] if (!cmp_l(ret[0]) && !cmp_l(ret[1])) switch ((ret[0] - ret[1] + (int)P.size() + 1) % P.size()) { case 0: return {ret[0], ret[0]}; // touches the edge (ret[0], ret[0] + 1) case 2: return {ret[1], ret[1]}; // touches the edge (ret[1], ret[1] + 1) } return {ret[0], ret[1]}; // intersects the edges (ret[0], ret[0] + 1) and (ret[1], ret[1] + 1) } pair _tangent_Pp_convex(const Polygon &P, Point p, int dir, int l, int r) { while (r - l > 1) { int mid = (l + r) >> 1; bool pvs = orientation(p, P[mid], P[mid - 1]) != -dir; bool nxt = orientation(p, P[mid], P[mid + 1]) != -dir; if (pvs && nxt) return {P[mid], mid}; if (!(pvs or nxt)) { auto p1 = _tangent_Pp_convex(P, p, dir, mid + 1, r); auto p2 = _tangent_Pp_convex(P, p, dir, l, mid - 1); return orientation(p, p1.first, p2.first) == dir ? p1 : p2; } if (!pvs) { if (orientation(p, P[mid], P[l]) == dir) r = mid - 1; else if (orientation(p, P[l], P[r]) == dir) r = mid - 1; else l = mid + 1; } if (!nxt) { if (orientation(p, P[mid], P[l]) == dir) l = mid + 1; else if (orientation(p, P[l], P[r]) == dir) r = mid - 1; else l = mid + 1; } } pair ret = {P[l], l}; for (int i = l + 1; i <= r; i++) ret = orientation(p, ret.first, P[i]) != dir ? make_pair(P[i], i) : ret; return ret; } // ccw means the tangent from Q to that point is in the same direction as the polygon ccw direction pair tangent_Pp_convex(const Polygon &P, Point p) { // 接線となる点のindex int ccw = _tangent_Pp_convex(P, p, 1, 0, (int)P.size() - 1).second; int cw = _tangent_Pp_convex(P, p, -1, 0, (int)P.size() - 1).second; return make_pair(ccw, cw); } double dist_Pp_convex(const Polygon &P, Point p) { double ans = INF; int n = P.size(); if (n <= 3) { for(int i = 0; i < n; i++) ans = min(ans, dist_Sp(Segment{P[i], P[(i + 1) % n]}, p)); return ans; } auto [r, l] = tangent_Pp_convex(P, p); if (l > r) r += n; while (l < r) { int mid = (l + r) >> 1; double left = dot(P[mid % n] - p, P[mid % n] - p), right = dot(P[(mid + 1) % n] - p, P[(mid + 1) % n] - p); ans = min({ans, left, right}); if (left < right) r = mid; else l = mid + 1; } ans = sqrt(ans); ans = min(ans, dist_Sp(Segment{P[l % n], P[(l + 1) % n]}, p)); ans = min(ans, dist_Sp(Segment{P[l % n], P[(l - 1 + n) % n]}, p)); return ans; } double dist_PL_convex(const Polygon &P, Line L, int top) { // O(log n) Point a = L.p1, b = L.p2; Point o = orth(b - a); if (orientation(a, b, P[0]) > 0) o = orth(a - b); int id = extreme_vertex(P, o, top); if (dot(P[id] - a, o) > 0) return 0.; //if o and a are in the same half of the line, then poly and line intersects return dist_Lp(L, P[id]); //does not intersect } double dist_PP_convex(const Polygon &P1, const Polygon &P2) { // O(N logN) double ans = INF; for (int i = 0; i < P1.size(); i++) { ans = min(ans, dist_Pp_convex(P2, P1[i])); } for (int i = 0; i < P2.size(); i++) { ans = min(ans, dist_Pp_convex(P1, P2[i])); } return ans; } double maximum_dist_PP_convex(Polygon P1, Polygon P2) { // O(N) int N = P1.size(), M = P2.size(); double ans = 0; if (N < 3 or M < 3) { for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) ans = max(ans, dot(P1[i] - P2[j], P1[i] - P2[j])); } return sqrt(ans); } if (P1[0].x > P2[0].x) swap(N, M), swap(P1, P2); int i = 0, j = 0, step = N + M + 10; while (j + 1 < M && P2[j].x < P2[j + 1].x) j++ ; while (step--) { if (cross(P1[(i + 1) % N] - P1[i], P2[(j + 1) % M] - P2[j]) >= 0) j = (j + 1) % M; else i = (i + 1) % N; ans = max(ans, dot(P1[i] - P2[j], P1[i] - P2[j])); } return sqrt(ans); } // -3:非交差, -2:CがPに真に含まれる, -1:CがPに内接, 0:交差, 1:CがPに外接, 2:CがPを真に含む, // 3:辺で外接, 4:点で外接, 5:辺でも点でも外接 int relation_CP(Circle C, const Polygon &P) { int N = P.size(); int in = 0, out = 0; bool r3 = false, r4 = false; for (int i = 0; i < N; i++) { int t = contains(C, P[i]); if (t == 2) in++; if (t == 0) out++; int r = relation_CS(C, Segment{P[i], P[(i + 1) % N]}); if (r == 6 or r == 7) return 0; // 真に交差 if (r == 4) r3 = true; // 辺で外接 if (r == 5) r4 = true; // 点で外接 } if (in == N) return 2; if (out == 0) return 1; if (contains(P, C.c) && out == N) return -2; if (contains(P, C.c) && in == 0) return -1; if (r3 && r4) return 5; if (r3) return 3; if (r4) return 4; return -3; } // 弱(軸平行長方形, -2~2) https://atcoder.jp/contests/arc051/tasks/arc051_a // 弱(三角形, -3~2) https://onlinejudge.u-aizu.ac.jp/services/ice/?problemId=0153 int count_intersections_CP(Circle C, const Polygon &P) { // 未 int N = P.size(); int ret = 0; // 円と線分集合と交点の個数 - 円上の点の個数 for (int i = 0; i < N; i++) { ret += count_intersections_CS(C, Segment{P[i], P[(i + 1) % N]}); ret -= (contains(C, P[i]) == 1); } return ret; } // 弱(正方形) https://yukicoder.me/problems/no/1027 signed main() { double r; cin >> r; Circle C(Point{0., 0.}, sqrt(r)); double d; cin >> d; d = sqrt(d); Polygon P = {Point{d, 0.}, Point{0., d}, Point{-d, 0.}, Point{0., -d}}; cout << count_intersections_CP(C, P) << endl; }