#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline T getb(T set, int i) { return (set >> i) & T(1); } template inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<1000000007>; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; using pim = pair; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(...) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif //【拡張ユークリッドの互除法】O(log max(|a|, |b|)) /* * g = GCD(a, b) ≧ 0 を返しつつ,a x + b y = g の解 (x, y) を求める. * |x| + |y| は最小になるよう選ばれる. */ template T extended_gcd(T a, T b, T& x, T& y) { // 参考 : https://ashiato45.hatenablog.jp/entry/2018/11/04/172848 // verify : https://atcoder.jp/contests/abc340/tasks/abc340_f //【方法】 // 行列を用いた非再帰の解法を採用する. // // はじめは // [1 0] [a] [a] // [0 1].[b] = [b] // で初期化する.第 i ステップを終えて // [x_i y_i ] [a] [a_i] // [x_(i+1) y_(i+1)].[b] = [b_i] // が成り立っているとする.このとき // a_i = q b_i + r // なる q, r をとると, // [0 1] [a_i] = [b_i] // [1 -q].[b_i] = [ r ] // より // [0 1] [x_i y_i ] [a] [b_i] // [1 -q].[x_(i+1) y_(i+1)].[b] = [ r ] // が成り立つので左辺の行列積をまとめる.この更新を続けていくと,いずれ // [x y] [a] [±1] // [* *].[b] = [ 0] // の形になるので,1 行目から所望の等式が得られる. if (a == 0 && b == 0) { x = y = 0; return 0; } x = 1, y = 0; T nx = 0, ny = 1; while (b != 0) { T q = a / b; T r = a % b; x -= q * nx; y -= q * ny; swap(nx, x); swap(ny, y); a = b; b = r; } if (a < 0) { x = -x; y = -y; a = -a; } return a; } //【二元一次不定方程式】O(log max(|a|, |b|)) /* * a x + b y = c の解 (x, y) のうち,x を非負最小にするものを格納する(無理なら負も許す) * 解があれば GCD(a, b) ≧ 0,なければ -1 を返す. * * 利用:【拡張ユークリッドの互除法】 */ template T bezout(T a, T b, T c, T& x, T& y) { // verify : https://atcoder.jp/contests/abc340/tasks/abc340_f if (b == 0) { if (a == 0) { if (c == 0) { x = y = 0; return 0; } else { return -1; } } if (c % a == 0) { x = c / a; y = 0; return abs(a); } else { return -1; } } if (b < 0) { a *= -1; b *= -1; c *= -1; } // a x + b y = g = gcd(a, b) T g = extended_gcd(a, b, x, y); if (c % g != 0) return -1; a /= g; b /= g; c /= g; x *= c % b; // c が大きくてもオーバーフローしないようにする x %= b; if (x < 0) x += b; y = (c - a * x) / b; return g; } //【めぐる式二分探索】O(log|ok - ng|) /* * 条件 okQ() を満たす要素 ok と満たさない要素 ng との境界を二分探索する. * 境界に隣り合うような条件を満たす要素(ok 側)の位置を返す. * debug_mode = true にして実行すると手元では単調かどうかチェックしながら全探索する. */ template T meguru_search(T ok, T ng, const FUNC& okQ, bool debug_mode = false) { // 参考 : https://twitter.com/meguru_comp/status/697008509376835584 // verify : https://atcoder.jp/contests/typical90/tasks/typical90_a Assert(ok != ng); #ifdef _MSC_VER // 単調かどうか自信がないとき用 if (debug_mode) { T step = ok < ng ? 1 : -1; T res = ok; bool is_ok = true; for (T i = ok; i != ng + step; i += step) { auto b = okQ(i); if (b) { if (!is_ok) { cout << "not monotony!" << endl; for (T i = ok; i != ng + step; i += step) { cout << i << " : " << okQ(i) << endl; } exit(1); } } else { if (is_ok) res = i - step; is_ok = false; } } return res; } #endif // 境界が決定するまで while (abs(ok - ng) > 1) { // 区間の中間 T mid = (ok + ng) / 2; // 中間が OK かどうかに応じて区間を縮小する. if (okQ(mid)) ok = mid; else ng = mid; } return ok; /* okQ の定義の雛形 auto okQ = [&](ll x) { return true || false; }; */ } int main() { input_from_file("input.txt"); // output_to_file("output.txt"); ll h, w; int n, m; ll s, c, sx, sy; cin >> h >> w >> n >> m >> s >> c >> sx >> sy; int mute_dump; sy = w - sy; dump("sx, sy, s:", sx, sy, s); vl xs, ys, as; rep(i, n) { ll x, y, a; cin >> x >> y >> a; y = w - y; xs.push_back(x); ys.push_back(y); as.push_back(a); xs.push_back(x); ys.push_back(2 * w - y); as.push_back(a); xs.push_back(2 * h - x); ys.push_back(y); as.push_back(a); xs.push_back(2 * h - x); ys.push_back(2 * w - y); as.push_back(a); } rep(j, m) { ll x, y, a; cin >> x >> y >> a; y = w - y; xs.push_back(x); ys.push_back(y); as.push_back(-a); xs.push_back(x); ys.push_back(2 * w - y); as.push_back(-a); xs.push_back(2 * h - x); ys.push_back(y); as.push_back(-a); xs.push_back(2 * h - x); ys.push_back(2 * w - y); as.push_back(-a); } mute_dump = 1; dump(xs); dump(ys); dump(as); n = (n + m) * 4; ll H = h * 2; ll W = w * 2; ll L = lcm(H, W); vl ds(n, INFL); rep(i, n) { ll p, q; ll g = bezout(H, -W, sx - sy - xs[i] + ys[i], p, q); if (g == -1) continue; ll d = xs[i] + H * p - sx; if (d < 0) { // cout << d; p += W / g; q += H / g; d = xs[i] + H * p - sx; // cout << "->" << d << endl; } ds[i] = d; } dump(ds); vector da(n); rep(i, n) da[i] = { ds[i], as[i] }; da.push_back({ L, 0 }); sort(all(da)); ll px = sx, py = sy, pd = 0, spd = INFL, spd_min = INFL; mint c_pos = 0, c_neg = 0; for (auto [d, a] : da) { dump("------ d, a:", d, a, "------"); ll add = d - pd; pd = d; ll nx = px + add; ll ny = py + add; ll cnt = (nx / h) - (px / h); cnt += (ny / w) - (py / w); px = nx; py = ny; spd -= cnt * c; chmin(spd_min, spd); spd += a; chmin(spd_min, spd); if (a > 0) c_pos++; else if (a < 0) c_neg++; dump(px, py, "/", spd - INFL, spd_min - INFL, "/", c_pos, c_neg); if (d == L) break; } mute_dump = 0; dump(px, py, "/", spd - INFL, spd_min - INFL, "/", c_pos, c_neg); ll spd_sub = INFL - spd_min; ll spd_dec = INFL - spd; dump(spd_sub, spd_dec); mint c_pos_all = 0, c_neg_all = 0; if (s > spd_sub) { if (spd_dec <= 0) EXIT(-1); ll q = (s - (spd_sub - spd_dec + 1)) / spd_dec; dump(q); c_pos_all += mint(q) * c_pos; c_neg_all += mint(q) * c_neg; s -= q * spd_dec; } dump(s, "/", c_pos_all, c_neg_all); px = sx, py = sy, pd = 0, spd = s; c_pos = 0, c_neg = 0; mute_dump = 1; for (auto [d, a] : da) { dump("------ d, a:", d, a, "------"); ll add = d - pd; pd = d; ll nx = px + add; ll ny = py + add; ll cnt = (nx / h) - (px / h); cnt += (ny / w) - (py / w); if (spd - cnt * c <= 0) { auto okQ = [&](ll add2) { ll nx2 = px + add2; ll ny2 = py + add2; ll cnt2 = (nx2 / h) - (px / h); cnt2 += (ny2 / w) - (py / w); return spd - cnt2 * c <= 0; }; auto add2 = meguru_search(add, 0LL, okQ); px += add2; py += add2; break; } px = nx; py = ny; spd -= cnt * c; spd += a; if (a > 0) c_pos++; else if (a < 0) c_neg++; if (spd <= 0) break; dump(px, py, "/", spd, "/", c_pos, c_neg); if (d == L) break; } mute_dump = 0; dump(px, py); px %= H; if (px > h) px = H - px; py %= W; if (py > w) py = W - py; py = w - py; c_pos_all += c_pos; c_neg_all += c_neg; cout << px << " " << py << " " << c_pos_all << " " << c_neg_all << endl; }