#include using namespace std; typedef signed long long ll; #define _P(...) (void)printf(__VA_ARGS__) #define FOR(x,to) for(x=0;x<(to);x++) #define FORR(x,arr) for(auto& x:arr) #define FORR2(x,y,arr) for(auto& [x,y]:arr) #define ALL(a) (a.begin()),(a.end()) #define ZERO(a) memset(a,0,sizeof(a)) #define MINUS(a) memset(a,0xff,sizeof(a)) template bool chmax(T &a, const T &b) { if(a bool chmin(T &a, const T &b) { if(a>b){a=b;return 1;}return 0;} //------------------------------------------------------- ll N,K; ll A[202020]; const ll mo=998244353; ll modpow(ll a, ll n = mo-2) { ll r=1; a%=mo; while(n) r=r*((n%2)?a:1)%mo,a=a*a%mo,n>>=1; return r; } template using vec=vector; //using vec=valarray; template vec fft(vec v, bool rev=false) { int n=v.size(),i,j,m; for(int m=n; m>=2; m/=2) { T wn=modpow(5,(mo-1)/m); if(rev) wn=modpow(wn); for(i=0;i=mo) v[j1]-=mo; w=(ll)w*wn%mo; } } } for(i=0,j=1;j>1;k>(i^=k);k>>=1); if(i>j) swap(v[i],v[j]); } if(rev) { ll rv = modpow(n); FOR(i,n) v[i]=(ll)v[i]*rv%mo; } return v; } template vec MultPoly(vec P,vec Q,bool resize=false) { if(resize) { int maxind=0,pi=-1,qi=-1,i; int s=2; FOR(i,P.size()) if(norm(P[i])) pi=i; FOR(i,Q.size()) if(norm(Q[i])) qi=i; if(pi==-1||qi==-1) return {}; maxind=pi+qi+1; while(s*2 R(s*2); for(int x=0;x<=pi;x++) for(int y=0;y<=qi;y++) (R[x+y]+=P[x]*Q[y])%=mo; return R; } vec P2(s*2),Q2(s*2); FOR(i,pi+1) P2[i]=P[i]; FOR(i,qi+1) Q2[i]=Q[i]; swap(P,P2),swap(Q,Q2); } P=fft(P), Q=fft(Q); for(int i=0;i vec inverse(vec a,int tsize=-1) { assert(a[0]>0); if(tsize==-1) tsize=a.size(); vec b={(T)modpow(a[0])}; while(b.size() c(a.begin(),a.begin()+min(tsize,2*(int)b.size())); vec d=MultPoly(b,b,true); if(d.size()>a.size()) d.resize(a.size()); c = MultPoly(c,d,true); b.resize(2*b.size()); int i; for(i=b.size()/2;iN_) return 0; return factr[C_]*fact[N_]%mo*factr[N_-C_]%mo; } vector prefix_sum(vector V,int num) { // (1-x)でnum回割る、または(1+x+x^2...)のnum乗を掛ける int N=V.size(); vector G; int i; ll p=num,q=1; ll a=1; FOR(i,min(num,N)+1) { if(i%2) G.push_back(mo-a); else G.push_back(a); a=a*p%mo*modpow(q)%mo; p--,q++; } G=inverse(G,N+1); V=MultPoly(V,G,1); V.resize(N); return V; } void solve() { int i,j,k,l,r,x,y; string s; cin>>N>>K; FOR(i,N) cin>>A[i]; if(K%2) { for(i=1;i V[2]; FOR(i,N) V[i%2].push_back(A[i]); /* auto W=prefix_sum(V[0].size(),K); V[0]=MultPoly(V[0],W,1); V[1]=MultPoly(V[1],W,1); */ V[0]=prefix_sum(V[0],K); V[1]=prefix_sum(V[1],K); FOR(i,N) cout<