#pragma region Macros #pragma GCC optimize("O3,unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,fma,mmx,abm,bmi,bmi2,popcnt,lzcnt") #pragma GCC target("avx2") // CF, CodeChef, HOJ ではコメントアウト #include // #include // using namespace atcoder; using namespace std; using namespace __gnu_pbds; // #include // #include // namespace mp = boost::multiprecision; // using Bint = mp::cpp_int; // using Bdouble = mp::number>; // Bdouble Beps = 0.00000000000000000000000000000001; // 1e-32 // const bool equals(Bdouble a, Bdouble b) { return mp::fabs(a - b) < Beps; } #define pb emplace_back #define int ll #define endl '\n' // #define sqrt __builtin_sqrtl // #define cbrt __builtin_cbrtl // #define hypot __builtin_hypotl using ll = long long; using ld = long double; const ld PI = acosl(-1); const int INF = 1 << 30; const ll INFL = 1LL << 61; const int MOD = 998244353; // const int MOD = 1000000007; const ld EPS = 1e-10; const bool equals(ld a, ld b) { return fabs((a) - (b)) < EPS; } const vector dx = {0, 1, 0, -1, 1, 1, -1, -1, 0}; // → ↓ ← ↑ ↘ ↙ ↖ ↗ 自 const vector dy = {1, 0, -1, 0, 1, -1, -1, 1, 0}; #define EC int struct Edge { int from, to; EC cost; Edge() {} // Edge() : from(-1), to(-1), cost(-1) {} Edge(int to, EC cost) : to(to), cost(cost) {} Edge(int from, int to, EC cost) : from(from), to(to), cost(cost) {} bool operator ==(const Edge &e) { return this->from == e.from && this->to == e.to && this->cost == e.cost; } bool operator !=(const Edge &e) { return this->from != e.from or this->to != e.to or this->cost != e.cost; } bool operator <(const Edge &e) { return this->cost < e.cost; } bool operator >(const Edge &e) { return this->cost > e.cost; } }; chrono::system_clock::time_point start; __attribute__((constructor)) void constructor() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(10); start = chrono::system_clock::now(); } random_device seed_gen; mt19937_64 rng(seed_gen()); uniform_int_distribution dist_x(0, 1e9); struct RNG { unsigned Int() { return dist_x(rng); } unsigned Int(unsigned l, unsigned r) { return dist_x(rng) % (r - l + 1) + l; } ld Double() { return ld(dist_x(rng)) / 1e9; } } rnd; namespace bit_function { using i64 = ll; // using i64 = uint64_t; // bit演算, x==0の場合は例外処理した方がよさそう. 区間は [l, r) i64 lrmask(int l, int r) { return (1LL << r) - (1LL << l); } i64 sub_bit(i64 x, int l, int r) { i64 b = x & ((1LL << r) - (1LL << l)); return b >> l; } // r溢れ可 i64 bit_width(i64 x) { return 64 - __builtin_clzll(x) + (x == 0); } i64 popcount(i64 x) { return __builtin_popcountll(x); } i64 popcount(i64 x, int l, int r) { return __builtin_popcountll(sub_bit(x, l, r)); } i64 unpopcount(i64 x) { return bit_width(x) - __builtin_popcountll(x); } // 最上位bitより下のみ i64 unpopcount(i64 x, int l, int r) { return r - l - __builtin_popcountll(sub_bit(x, l, r)); } // 最上位bitより上も含まれうる bool is_pow2(i64 x) { return __builtin_popcountll(x) == 1; } // xが負のときは常にfalse bool is_pow4(i64 x) { return __builtin_popcountll(x) == 1 && __builtin_ctz(x) % 2 == 0; } //bool is_pow4(ll x) { return __builtin_popcountll(x) == 1 && (x&0x55555555); } int top_bit(i64 x) { return 63 - __builtin_clzll(x);} // 2^kの位 (x > 0) int bot_bit(i64 x) { return __builtin_ctzll(x);} // 2^kの位 (x > 0) int next_bit(i64 x, int k) { // upper_bound x >>= (k + 1); int pos = k + 1; while (x > 0) { if (x & 1) return pos; x >>= 1; pos++; } return -1; } int prev_bit(i64 x, int k) { // k = min(k, bit_width(x)); ? int pos = 0; while (x > 0 && pos < k) { if (x & 1) { if (pos < k) return pos; } x >>= 1; pos++; } return -1; } int kth_bit(i64 x, int k) { // kは1-indexed int pos = 0, cnt = 0; while (x > 0) { if (x & 1) { cnt++; if (cnt == k) return pos; } x >>= 1; pos++; } return -1; } i64 msb(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // mask i64 lsb(i64 x) { return (x & -x); } // mask int countl_zero(i64 x) { return __builtin_clzll(x); } int countl_one(i64 x) { // countl_oneと定義が異なるので注意 i64 ret = 0, k = 63 - __builtin_clzll(x); while (k != -1 && (x & (1LL << k))) { k--; ret++; } return ret; } int countr_zero(i64 x) { return __builtin_ctzll(x); } // x=0のとき64 int countr_one(i64 x) { int ret = 0; while (x & 1) { x >>= 1; ret++; } return ret; } // int countr_one(ll x) { return __builtin_popcount(x ^ (x & -~x)); i64 l_one(i64 x) { // 最上位で連なってる1のmask if (x == 0) return 0; i64 ret = 0, k = 63 - __builtin_clzll(x); while (k != -1 && (x & (1LL << k))) { ret += 1LL << k; k--; } return ret; } int floor_log2(i64 x) { return 63 - __builtin_clzll(x); } // top_bit int ceil_log2(i64 x) { return 64 - __builtin_clzll(x - 1); } i64 bit_floor(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // msb i64 bit_ceil(i64 x) { if (x == 0) return 0; return 1LL << (64 - __builtin_clzll(x - 1)); } i64 rotl(i64 x, int k) { // 有効bit内でrotate. オーバーフロー注意 i64 w = bit_width(x); k %= w; return ((x << k) | (x >> (w - k))) & ((1LL << w) - 1); } // i64 rotl(i64 x, i64 l, i64 m, i64 r) {} i64 rotr(i64 x, int k) { i64 w = bit_width(x); k %= w; return ((x >> k) | (x << (w - k))) & ((1LL << w) - 1); } // i64 rotr(i64 x, i64 l, i64 m, i64 r) {} i64 bit_reverse(i64 x) { // 有効bit内で左右反転 i64 r = 0, w = bit_width(x); for (i64 i = 0; i < w; i++) r |= ((x >> i) & 1) << (w - i - 1); return r; } // i64 bit_reverse(i64 x, int l, int r) {} bool is_palindrome(i64 x) { return x == bit_reverse(x); } bool is_palindrome(i64 x, int l, int r) { i64 b = sub_bit(x, l, r); return b == bit_reverse(b); } i64 concat(i64 a, i64 b) { return (a << bit_width(b)) | b; } // オーバーフロー注意 i64 erase(i64 x, int l, int r) { return x >> r << l | x & ((1LL << l) - 1); } // [l, r) をカット i64 hamming(i64 a, i64 b) { return __builtin_popcountll(a ^ b); } i64 hamming(i64 a, i64 b, int l, int r) { return __builtin_popcountll(sub_bit(a, l, r) ^ sub_bit(b, l, r)); } i64 compcount(i64 x) { return (__builtin_popcountll(x ^ (x >> 1)) + (x & 1)) / 2; } i64 compcount2(i64 x) { return compcount(x & (x >> 1)); } // 長さ2以上の連結成分の個数 i64 adjacount(i64 x) { return __builtin_popcountll(x & (x >> 1)); } // 隣接する1のペアの個数 i64 next_combination(i64 x) { i64 t = x | (x - 1); return (t + 1) | (((~t & -~t) - 1) >> (__builtin_ctzll(x) + 1)); } } using namespace bit_function; namespace util_function { namespace Std = std; __int128_t POW(__int128_t x, int n) { __int128_t ret = 1; assert(n >= 0); if (x == 1 or n == 0) ret = 1; else if (x == -1 && n % 2 == 0) ret = 1; else if (x == -1) ret = -1; else if (n % 2 == 0) { // assert(x < INFL); ret = POW(x * x, n / 2); } else { // assert(x < INFL); ret = x * POW(x, n - 1); } return ret; } int per(int x, int y) { // x = qy + r (0 <= r < y) を満たすq assert(y != 0); if (x >= 0 && y > 0) return x / y; if (x >= 0 && y < 0) return x / y - (x % y < 0); if (x < 0 && y < 0) return x / y + (x % y < 0); return x / y - (x % y < 0); // (x < 0 && y > 0) } int mod(int x, int y) { // x = qy + r (0 <= r < y) を満たすr assert(y != 0); return x - y * per(x, y); } // https://yukicoder.me/problems/no/2781 int floor(int x, int y) { // (ld)x / y 以下の最大の整数 assert(y != 0); if (y < 0) x = -x, y = -y; return x >= 0 ? x / y : (x + 1) / y - 1; } int ceil(int x, int y) { // (ld)x / y 以上の最小の整数 assert(y != 0); if (y < 0) x = -x, y = -y; return x > 0 ? (x - 1) / y + 1 : x / y; } int round(int x, int y) { // (ld)x / y を小数第1位について四捨五入 assert(y != 0); return (x * 2 + y) / (y * 2); } int round(int x, int y, int k) { // (ld)x / y を10^kの位に関して四捨五入 assert(y != 0 && k >= 0); if (k == 0) return (x * 2 + y) / (y * 2); x /= y * POW(10, k - 1); if (x % 10 >= 5) return (x + 10 - x % 10) * POW(10, k - 1); return x * POW(10, k - 1); } int round2(int x, int y) { // 五捨五超入 // 未verify assert(y != 0); if (y < 0) y = -y, x = -x; int z = x / y; if ((z * 2 + 1) * y <= y * 2) z++; return z; } ld round(ld x, int k) { // xを10^kの位に関して四捨五入. // x += EPS; ld d = pow(10, -k); return Std::round(x * d) / d; } ld floor(ld x, int k) { // xを10^kの位に関してflooring // x += EPS; ld d = pow(10, -k); return Std::floor(x * d) / d; // 未verify } ld ceil(ld x, int k) { // xを10^kの位に関してceiling // x -= EPS; ld d = pow(10, -k); return Std::ceil(x * d) / d; // 未verify } // int kth(int x, int y, int k) { // x / yの10^kの位の桁 // } int floor(ld x, ld y) { // 誤差対策TODO assert(!equals(y, 0)); return Std::floor(x / y); // floor(x) = ceil(x - 1) という話も } int ceil(ld x, ld y) { // 誤差対策TODO // ceil(p/q) = -floor(-(p/q))らしい assert(!equals(y, 0)); return Std::ceil(x / y); // ceil(x) = floor(x + 1) } int perl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす q // 未verify. 誤差対策TODO. EPS外してもいいかも。 assert(!equals(y, 0)); if (x >= 0 && y > 0) return Std::floor(x / y)+EPS; if (x >= 0 && y < 0) return -Std::floor(x / fabs(y)); if (x < 0 && y < 0) return Std::floor(x / y) + (x - Std::floor(x/y)*y < -EPS); return Std::floor(x / y) - (x - Std::floor(x/y)*y < -EPS); // (x < 0 && y > 0) } ld modl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす r // 未verify. 誤差対策TODO. -0.0が返りうる。 assert(!equals(y, 0)); if (x >= 0) return x - fabs(y)*fabs(per(x, y)); return x - fabs(y)*floor(x, fabs(y)); } int seisuu(ld x) { return (int)x; } // 整数部分. 誤差対策TODO int modf(ld x) { if (x < 0) return ceill(x); else return floorl(x); } // 正なら+EPS, 負なら-EPSしてから、文字列に直して小数点以下を捨てる? int seisuu(int x, int y) { assert(y != 0); return x / y; } int seisuu(ld x, ld y) { // 誤差対策TODO assert(!equals(y, 0)); return (int)(x / y); } int floor_log(int base, int x) { assert(base >= 2); int ret = 0, now = 1; while (now <= x) { now *= base; if (now <= x) ret++; } return ret; } int ceil_log(int base, int x) { assert(base >= 2); int ret = 0, now = 1; while (now < x) { now *= base; ret++; } return ret; } template pair max(const pair &a, const pair &b) { if (a.first > b.first or a.first == b.first && a.second > b.second) return a; return b; } template pair min(const pair &a, const pair &b) { if (a.first < b.first or a.first == b.first && a.second < b.second) return a; return b; } template bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } template bool chmax(pair &a, const pair &b) { if (a.first < b.first or a.first == b.first && a.second < b.second) { a = b; return true; } return false; } template bool chmin(pair &a, const pair &b) { if (a.first > b.first or a.first == b.first && a.second > b.second) { a = b; return true; } return false; } template T mid(T a, T b, T c) { // 誤差対策TODO return a + b + c - Std::max({a, b, c}) - Std::min({a, b, c}); } template void Sort(T& a, T& b, T& c, Args&... args) { vector vec = {a, b, c, args...}; sort(vec.begin(), vec.end()); auto it = vec.begin(); a = *it++; b = *it++; c = *it++; int dummy[] = { (args = *it++, 0)... }; static_cast(dummy); } template void Sortr(T& a, T& b, T& c, Args&... args) { vector vec = {a, b, c, args...}; sort(vec.rbegin(), vec.rend()); auto it = vec.begin(); a = *it++; b = *it++; c = *it++; int dummy[] = { (args = *it++, 0)... }; static_cast(dummy); } template void sort(vector &A, vector &B) { vector> P(A.size()); for (int i = 0; i < A.size(); i++) P[i] = {A[i], B[i]}; sort(P.begin(), P.end()); for (int i = 0; i < A.size(); i++) A[i] = P[i].first, B[i] = P[i].second; } istream &operator >>(istream &is, __int128_t& x) { string S; is >> S; __int128_t ret = 0; int f = 1; if (S[0] == '-') f = -1; for (int i = 0; i < S.length(); i++) if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0'; x = ret * f; return (is); } ostream &operator <<(ostream &os, __int128_t x) { ostream::sentry s(os); if (s) { __uint128_t tmp = x < 0 ? -x : x; char buffer[128]; char *d = end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (x < 0) { --d; *d = '-'; } int len = end(buffer) - d; if (os.rdbuf()->sputn(d, len) != len) os.setstate(ios_base::badbit); } return os; } __int128_t sto128(const string &S) { __int128_t ret = 0; int f = 1; if (S[0] == '-') f = -1; for (int i = 0; i < S.length(); i++) if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0'; return ret * f; } __int128_t gcd(__int128_t a, __int128_t b) { return b ? gcd(b, a % b) : a; } __int128_t lcm(__int128_t a, __int128_t b) { return a / gcd(a, b) * b; // lcmが__int128_tに収まる必要あり } string to_string(double x, int k) { // 小数第k+1を四捨五入して小数第k位までを出力 // 切り捨てがほしい場合は to_string(x, k+1) として pop_back() すればよい? ostringstream os; os << fixed << setprecision(k) << x; return os.str(); } string to_string(__int128_t x) { string ret = ""; if (x < 0) { ret += "-"; x *= -1; } while (x) { ret += (char)('0' + x % 10); x /= 10; } reverse(ret.begin(), ret.end()); return ret; } string to_string(char c) { string s = ""; s += c; return s; } } using namespace util_function; struct custom_hash { static uint64_t splitmix64(uint64_t x) { x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } }; template size_t HashCombine(const size_t seed,const T &v) { return seed^(hash()(v)+0x9e3779b9+(seed<<6)+(seed>>2)); } template struct hash>{ size_t operator()(const pair &keyval) const noexcept { return HashCombine(hash()(keyval.first), keyval.second); } }; template struct hash>{ size_t operator()(const vector &keyval) const noexcept { size_t s=0; for (auto&& v: keyval) s=HashCombine(s,v); return s; } }; template struct HashTupleCore{ template size_t operator()(const Tuple &keyval) const noexcept{ size_t s=HashTupleCore()(keyval); return HashCombine(s,get(keyval)); } }; template <> struct HashTupleCore<0>{ template size_t operator()(const Tuple &keyval) const noexcept{ return 0; } }; template struct hash>{ size_t operator()(const tuple &keyval) const noexcept { return HashTupleCore>::value>()(keyval); } }; template class Compress { public: int sz = 0; vector uniqV; Compress() {} template Compress(const Vecs&... vecs) { (uniqV.insert(uniqV.end(), vecs.begin(), vecs.end()), ...); sort(uniqV.begin(), uniqV.end()); uniqV.erase(unique(uniqV.begin(), uniqV.end()), uniqV.end()); sz = uniqV.size(); } vector zip(const vector &V) { vector ret(V.size()); for (int i = 0; i < V.size(); i++) { ret[i] = encode(V[i]); } return ret; } vector unzip(const vector &V) { vector ret(V.size()); for (int i = 0; i < V.size(); i++) { ret[i] = decode(V[i]); } return ret; } int size() { return sz; } int encode(T x) { auto it = lower_bound(uniqV.begin(), uniqV.end(), x); return it - uniqV.begin(); } T decode(int x) { if (x < 0 or x >= uniqV.size()) return -1; // xが範囲外の場合 return uniqV[x]; } }; class UnionFind { public: UnionFind() = default; UnionFind(int N) : par(N), sz(N, 1) { iota(par.begin(), par.end(), 0); } int root(int x) { if (par[x] == x) return x; return (par[x] = root(par[x])); } bool unite(int x, int y) { int rx = root(x); int ry = root(y); if (rx == ry) return false; if (sz[rx] < sz[ry]) swap(rx, ry); sz[rx] += sz[ry]; par[ry] = rx; return true; } bool issame(int x, int y) { return (root(x) == root(y)); } int size(int x) { return sz[root(x)]; } vector> groups(int N) { vector> G(N); for (int x = 0; x < N; x++) { G[root(x)].push_back(x); } G.erase( remove_if(G.begin(), G.end(), [&](const vector& V) { return V.empty(); }), G.end()); return G; } private: vector par, sz; }; template struct BIT { int N; // 要素数 vector bit[2]; // データの格納先 BIT(int N_, int x = 0) { N = N_ + 1; bit[0].assign(N, 0); bit[1].assign(N, 0); if (x != 0) { for (int i = 0; i < N; i++) add(i, x); } } BIT(const vector &A) { N = A.size() + 1; bit[0].assign(N, 0); bit[1].assign(N, 0); for (int i = 0; i < (int)A.size(); i++) add(i, A[i]); } void add_sub(int p, int i, T x) { while (i < N) { bit[p][i] += x; i += (i & -i); } } void add(int l, int r, T x) { add_sub(0, l + 1, -x * l); add_sub(0, r + 1, x * r); add_sub(1, l + 1, x); add_sub(1, r + 1, -x); } void add(int i, T x) { add(i, i + 1, x); } T sum_sub(int p, int i) { T ret = 0; while (i > 0) { ret += bit[p][i]; i -= (i & -i); } return ret; } T sum(int i) { return sum_sub(0, i) + sum_sub(1, i) * i; } T sum(int l, int r) { return sum(r) - sum(l); } T get(int i) { return sum(i, i + 1); } void set(int i, T x) { T s = get(i); add(i, -s + x); } }; template class Modint { public: int val = 0; Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; } Modint(const Modint &r) { val = r.val; } Modint operator -() { return Modint(-val); } // 単項 Modint operator +(const Modint &r) { return Modint(*this) += r; } Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; } Modint operator -(const Modint &r) { return Modint(*this) -= r; } Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; } Modint operator *(const Modint &r) { return Modint(*this) *= r; } Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; } Modint operator /(const Modint &r) { return Modint(*this) /= r; } Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; } Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置 Modint operator ++(signed) { ++*this; return *this; } // 後置 Modint& operator --() { val--; if (val < 0) val += mod; return *this; } Modint operator --(signed) { --*this; return *this; } Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; } Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; } Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; } Modint &operator -=(const int &q) { Modint r(q); if (val < r.val) val += mod; val -= r.val; return *this; } Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; } Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; } Modint &operator /=(const Modint &r) { int a = r.val, b = mod, u = 1, v = 0; while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);} val = val * u % mod; if (val < 0) val += mod; return *this; } Modint &operator /=(const int &q) { Modint r(q); int a = r.val, b = mod, u = 1, v = 0; while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);} val = val * u % mod; if (val < 0) val += mod; return *this; } bool operator ==(const Modint& r) { return this -> val == r.val; } bool operator <(const Modint& r) { return this -> val < r.val; } bool operator >(const Modint& r) { return this -> val > r.val; } bool operator !=(const Modint& r) { return this -> val != r.val; } friend istream &operator >>(istream &is, Modint& x) { int t; is >> t; x = t; return (is); } friend ostream &operator <<(ostream &os, const Modint& x) { return os << x.val; } }; using mint = Modint; mint modpow(const mint &x, int n) { if (n < 0) return (mint)1 / modpow(x, -n); // 未verify assert(n >= 0); if (n == 0) return 1; mint t = modpow(x, n / 2); t = t * t; if (n & 1) t = t * x; return t; } int modpow(__int128_t x, int n, int mod) { if (n == 0 && mod == 1) return 0; assert(n >= 0 && mod > 0); // TODO: n <= -1 __int128_t ret = 1; while (n > 0) { if (n % 2 == 1) ret = ret * x % mod; x = x * x % mod; n /= 2; } return ret; } // int modinv(__int128_t x, int mod) { // // assert(mod > 0); // // assert(x > 0); // if (x == 1 or x == 0) return 1; // return mod - modinv(mod % x, mod) * (mod / x) % mod; // } vector _fac, _finv, _inv; void COMinit(int N) { _fac.resize(N + 1); _finv.resize(N + 1); _inv.resize(N + 1); _fac[0] = _fac[1] = 1; _finv[0] = _finv[1] = 1; _inv[1] = 1; for (int i = 2; i <= N; i++) { _fac[i] = _fac[i-1] * mint(i); _inv[i] = -_inv[MOD % i] * mint(MOD / i); _finv[i] = _finv[i - 1] * _inv[i]; } } mint FAC(int N) { if (N < 0) return 0; return _fac[N]; } mint FACinv(int N) { if (N < 0) return 0; return _finv[N]; } mint COM(int N, int K) { if (N < K) return 0; if (N < 0 or K < 0) return 0; return _fac[N] * _finv[K] * _finv[N - K]; } mint COMinv(int N, int K) { if (N < K) return 0; if (N < 0 or K < 0) return 0; return _finv[N] * _fac[K] * _fac[N - K]; } mint MCOM(const vector &V) { int N = 0; for (int i = 0; i < V.size(); i++) N += V[i]; mint ret = _fac[N]; for (int i = 0; i < V.size(); i++) ret *= _finv[V[i]]; return ret; } mint PERM(int N, int K) { if (N < K) return 0; if (N < 0 or K < 0) return 0; return _fac[N] * _finv[N - K]; } mint NHK(int N, int K) { // initのサイズに注意 if (N == 0 && K == 0) return 1; return COM(N + K - 1, K); } #pragma endregion struct Point3d { double x, y, z; Point3d() {} Point3d(double x, double y, double z) : x(x), y(y), z(z) {} Point3d operator+(const Point3d &p) { return Point3d(x+p.x, y+p.y, z+p.z); } Point3d operator-(const Point3d &p) { return Point3d(x-p.x, y-p.y, z-p.z); } Point3d operator*(const double &k) { return Point3d(x*k, y*k, z*k); } Point3d operator/(const double &k) { return Point3d(x/k, y/k, z/k); } friend istream& operator>>(istream &is, Point3d &p) { is >> p.x >> p.y >> p.z; return is; } friend ostream& operator<<(ostream& os, Point3d &p) { os << p.x << " " << p.y << " " << p.z; return os; } bool operator==(const Point3d &p) const { return equals(x, p.x) && equals(y, p.y) && equals(z, p.z); } bool operator<(const Point3d &p) const { if (!equals(x, p.x)) return x < p.x; if (!equals(y, p.y)) return y < p.y; if (!equals(z, p.z)) return z < p.z; return false; } }; using Vector3d = Point3d; int sign(double x) { return x < -EPS ? -1 : x > EPS; } // -1(負)/0/1(正) double norm(Point3d p) { return p.x*p.x + p.y*p.y + p.z*p.z; } double abs(Point3d p) { return sqrt(norm(p)); } double dist(Point3d a, Point3d b) { return sqrt(norm(a - b)); } double dot(Point3d a, Point3d b) { return a.x*b.x + a.y*b.y + a.z*b.z; } Vector3d cross(Point3d a, Point3d b) { return Vector3d(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x); } // https://yukicoder.me/problems/no/2765 Vector3d normalize(Vector3d v) { // 長さを1に正規化(単位ベクトル) assert(abs(v) > EPS); return v / abs(v); } double rad_to_deg(double rad) { return (rad * 180. / PI); } double deg_to_rad(double deg) { return (deg * PI / 180.); } double normalize(double rad) { // to [-PI, PI) double ret = fmod(rad + PI, PI*2.); if (ret < 0) ret += PI; else ret -= PI; return ret; } // maroon's library, Contest 2: ptKU Contest 1, ptTZ Summer 2022 Day 4 double angle(Point3d a, Point3d b) { double costheta = dot(a, b) / norm(a) / norm(b); return acos(max(-1., min(1., costheta))); } double small_angle(Point3d a, Point3d b) { return acos(min(fabs(dot(a, b)) / abs(a) / abs(b), (double)1.)); } bool is_lattice(Point3d p) { // 未 return equals(abs(p.x - round(p.x)), 0.) && equals(abs(p.y - round(p.y)), 0.) && equals(abs(p.z - round(p.z)), 0.); } bool is_lattice(double x, double y, double z) { // 未 return equals(abs(x - round(x)), 0.) && equals(abs(y - round(y)), 0.) && equals(abs(z - round(z)), 0.); } bool is_parallel(Vector3d v1, Vector3d v2) { if (equals(v1.x*v2.y, v1.y*v2.x) && equals(v1.y*v2.z, v1.z*v2.y) && equals(v1.z*v2.x, v1.x*v2.z)) return true; return false; } bool is_orthogonal(Vector3d v1, Vector3d v2) { if (equals(v1.x*v2.x + v1.y*v2.y + v1.z*v2.z, 0.)) return true; return false; } struct Line3d { Point3d o, d; // p = o + k * d (k is a real parameter) Line3d() {} Line3d(Point3d p1, Point3d p2) : d(p2 - p1), o(p1) {} Line3d(double a, double b, double c, double e) { // ax + by + cz + e = 0. 未 if (equals(a, 0)) o = Point3d{0, -e / b, 0}, d = Point3d{1, -a / b, 0}; else if (equals(b, 0)) o = Point3d{-e / a, 0, 0}, d = Point3d{-b / a, 1, 0}; else o = Point3d{0, 0, -e / c}, d = Point3d{1, 0, -a / c}; } double dist2(Point3d p) { return dot(cross(d, p - o), cross(d, p - o)) / dot(d, d); } double dist(Point3d p) { return sqrt(dist2(p)); } bool cmp_proj(Point3d p, Point3d q) { return dot(d, p) < dot(d, q); } friend istream& operator>>(istream &is, Line3d &L) { Point3d p1, p2; is >> p1 >> p2; L = Line3d(p1, p2); return is; } // bool operator==(const Line3d &L) const {} }; struct Segment3d { Point3d p1, p2; Segment3d() {} Segment3d(Point3d p1, Point3d p2) : p1(p1), p2(p2) {} double length() { return dist(p1, p2); } friend istream& operator>>(istream &is, Segment3d &S) { is >> S.p1 >> S.p2; return is; } bool operator==(const Segment3d &S) const { return (p1 == S.p1 && p2 == S.p2) or (p1 == S.p2 && p2 == S.p1); } }; bool on_line(Line3d L, Point3d p) { return equals(abs(cross(L.o - p, L.o + L.d - p)), 0); // return is_parallel(L.o - p, L.o + L.d - p); } bool on_segment(Segment3d S, Point3d p) { if (!on_line(Line3d{S.p1, S.p2}, p)) return false; return equals(abs(S.p2 - S.p1), abs(p - S.p1) + abs(p - S.p2)); } // small angle between direction vectors of two lines double angle(Line3d L1, Line3d L2) { return small_angle(L1.d, L2.d); } Point3d projection(Line3d L, Point3d p) { Vector3d base = L.d; double t = dot(p - L.o, base) / norm(base); return L.o + base * t; } // Point3d projection(Segment3d S, Point3d p) { // 未. closet_point // Vector base = S.p2 - S.p1; // double r = dot(p - S.p1, base) / base.norm(); // Point3d proj = S.p1 + base * r; // if (r < 0.) return S.p1; // if (r > 1.) return S.p2; // return proj; // } Point3d reflection(Line3d L, Point3d p) { return p + (projection(L, p) - p) * 2.; } bool is_parallel(Line3d L1, Line3d L2) { return is_parallel(L1.d, L2.d); } bool is_parallel(Line3d L, Segment3d S) { return is_parallel(L.d, S.p2 - S.p1); } bool is_parallel(Segment3d S1, Segment3d S2) { return is_parallel(S1.p2 - S1.p1, S2.p2 - S2.p1); } bool is_orthogonal(Line3d L1, Line3d L2) { return is_orthogonal(L1.d, L2.d); } bool is_orthogonal(Line3d L, Segment3d S) { return is_orthogonal(L.d, S.p2 - S.p1); } bool is_orthogonal(Segment3d S1, Segment3d S2) { return is_orthogonal(S1.p2 - S1.p1, S2.p2 - S2.p1); } // bool intersect_LL(Line3d L1, Line3d L2) { // return !is_parallel(L1, L2) && (同一平面上); // } // bool intersect_LS(Line3d L, Segment3d S) { // 2次元のもの // return (cross(L.d, S.p1 - L.p1) * cross(L.d, S.d) < EPS); // } // bool intersect_SS(Segment3d S1, Segment3d S2) { // } // vector cross_point_LL(Line3d L1, Line3d L2) {} // vector cross_point_LS(Line3d L, Segment3d S) {} // vector cross_point_SS(Segment3d S1, Segment3d S2) {} double dist_Lp(Line3d L, Point3d p) { return abs(cross(L.d, p - L.o)) / abs(L.d); } double dist_Sp(Segment3d S, Point3d p) { Point3d r = projection(Line3d{S.p1, S.p2}, p); if (on_segment(S, r)) return abs(p - r); return min(abs(S.p1 - p), abs(S.p2 - p)); } pair closest_pair(Line3d L1, Line3d L2) { Point3d d1 = normalize(L1.d); Point3d d2 = normalize(L2.d); // P(x) = L1.o + d1 * x, Q(y) = L2.o + d2 * y. min |P(x) - Q(y)| is the distance of the lines L1, L2. double p = dot(L2.d, d1), q = dot(L2.d, d2), c = dot(d1, d2); // x - cy = p // cx - y = q double x, y; if (equals(abs(c), 1.)) { // parallel <=> d1 // d2 x = p, y = 0; } else { double den = 1 - c*c; x = (p - c*q) / den, y = (c*p - q) / den; } return {L1.o + d1*x, L2.o + d2*y}; } // ライブラリにほかの実装あり // pair closest_pair(Segment3d L1, Segment3d L2) {} double dist_LL(Line3d L1, Line3d L2) { auto [p, q] = closest_pair(L1, L2); return dist(p, q); } double dist_LS(Line3d L, Segment3d S) { auto [p, q] = closest_pair(L, Line3d{S.p1, S.p2}); return on_segment(S, q) ? dist(p, q) : min(dist_Lp(L, S.p1), dist_Lp(L, S.p2)); } double dist_SS(Segment3d S1, Segment3d S2) { auto [p, q] = closest_pair(Line3d{S1.p1, S1.p2}, Line3d{S2.p1, S2.p2}); return on_segment(S1, p) && on_segment(S2, q) ? dist(p, q) : min({dist_Sp(S1, S2.p1), dist_Sp(S1, S2.p2), dist_Sp(S2, S1.p1), dist_Sp(S2, S1.p2)}); } struct Plane { Point3d n; // 法線ベクトル double d; // dot(n, p) Plane() {} Plane(Point3d n, double d) : n(n), d(d) {} Plane(Point3d n, Point3d p) : n(n), d(dot(n, p)) {} Plane(Point3d p, Point3d q, Point3d r) : Plane(cross(q - p, r - p), p) {} // non-collinear points P,Q,R // 正:nと同じ側, 0:面上, 負:nと反対側 double side(Point3d p) { return dot(n, p) - d; } // tだけ平行移動 Plane translate(Point3d t) { return {n, d + dot(n, t)}; } // nの方向にdだけ平行移動 Plane shiftUp(double dist) { return {n, d + dist * abs(n)}; } // 平面上の異なる点を2つ返す pair get_two_points_on_plane() { assert(sign(n.x) != 0 or sign(n.y) != 0 or sign(n.z) != 0); if (sign(n.x) == 0 && sign(n.y) == 0) return {Point3d(1, 0, d/n.z), Point3d(0, 1, d/n.z)}; if (sign(n.y) == 0 && sign(n.z) == 0) return {Point3d(d/n.x, 1, 0), Point3d(d/n.x, 0, 1)}; if (sign(n.z) == 0 && sign(n.x) == 0) return {Point3d(1, d/n.y, 0), Point3d(0, d/n.y, 1)}; if (sign(n.x) == 0) return {Point3d(1, d/n.y, 0), Point3d(0, 0, d/n.z)}; if (sign(n.y) == 0) return {Point3d(0, 1, d/n.z), Point3d(d/n.x, 0, 0)}; if (sign(n.z) == 0) return {Point3d(d/n.x, 0, 1), Point3d(0, d/n.y, 0)}; if (sign(d)!=0) return {Point3d(d/n.x, 0, 0), Point3d(0, d/n.y, 0)}; return {Point3d(n.y, -n.x, 0), Point3d(-n.y, n.x, 0)}; } }; Point3d projection(Plane P, Point3d p) { Point3d a = P.n * P.d; return p - (P.n * dot(p - a, P.n)); } Point3d reflection(Plane P, Point3d p) { return p + (projection(P, p) - p) * 2.; } bool is_parallel(Plane P, Line3d L) { return is_orthogonal(P.n, L.d); } bool is_parallel(Plane P, Segment3d S) { return is_orthogonal(P.n, S.p1 - S.p2); } bool is_orthogonal(Plane P, Line3d L) { return is_parallel(P.n, L.d); } bool is_orthogonal(Plane P, Segment3d S) { return is_parallel(P.n, S.p1 - S.p2); } bool is_parallel(Plane P1, Plane P2) { // (0, 0, 0)か return abs(cross(P1.n, P2.n)) < EPS; } bool is_orthogonal(Plane P1, Plane P2) { return sign(dot(P1.n, P2.n)) == 0; } double angle(Plane P, Line3d l) { return PI / 2. - acos(min(fabs(dot(P.n, l.d)) / abs(P.n) / abs(l.d), 1.)); } bool intersect_PL(Plane P, Line3d L) { return !is_parallel(P, L); } bool intersect_PS(Plane P, Segment3d S) { Point3d a = P.n * P.d; double b = dot(a - S.p1, P.n); double c = dot(a - S.p2, P.n); if (b > c) swap(b, c); if (b < EPS && c > -EPS) return true; return false; } bool intersect_PP(Plane P1, Plane P2) { return !is_parallel(P1, P2); } Point3d cross_point_PL(Plane P, Line3d L) { return L.o - L.d * P.side(L.o) / dot(L.d, P.n); } Point3d cross_point_PS(Plane P, Segment3d S) { Point3d a = P.n * P.d; double dot_p0a = fabs(dot(S.p1 - a, P.n)); double dot_p1a = fabs(dot(S.p2 - a, P.n)); if (equals(dot_p0a + dot_p1a, 0)) return S.p1; return S.p1 + (S.p2 - S.p1) * (dot_p0a / (dot_p0a + dot_p1a)); } Line3d cross_line_PP(Plane p1, Plane p2) { // p1とp2は同一でない Point3d d = cross(p1.n, p2.n); Point3d o = cross(p2.n * p1.d - p1.n * p2.d, d) / dot(d, d); return {o, d}; } double dist_Pp(Plane P, Point3d p) { return fabs(P.side(p)) / abs(P.n); } // https://yukicoder.me/problems/no/132 // double dist_Pp(Plane P, Point3d p) { // Point3d a = P.n * P.d; // 平面上の適当な点をつくる // return abs(dot(p - a, P.n)); // } // https://yukicoder.me/problems/no/132 double dist_PL(Plane P, Line3d L) { return is_parallel(P, L) ? dist_Pp(P, L.o) : 0; } double dist_PS(Plane P, Segment3d S) { Point3d ha = projection(P, S.p1), hb = projection(P, S.p2); double ipa = dot(S.p1 - ha, S.p2 - S.p1), ipb = dot(S.p2 - hb, S.p1 - S.p2); return sign(ipa) < 0 && sign(ipb) < 0 ? 0 : min(dist_Pp(P, S.p1), dist_Pp(P, S.p2)); } double dist_PP(Plane P1, Plane P2) { // 未 if (!is_parallel(P1, P2)) return 0; return abs(P1.d - P2.d) / abs(P1.n); } using P3db = pair; double area(Point3d a, Point3d b, Point3d c) { return abs(cross(b - a, c - a)) / 2.; } signed main() { int N; cin >> N; Point3d p; cin >> p; vector P(N); for (int i = 0; i < N; i++) { cin >> P[i]; } double ans = 0; for (int i = 0; i < N; i++) { for (int j = i + 1; j < N; j++) { for (int k = j + 1; k < N; k++) { Plane f(P[i], P[j], P[k]); ans += dist_Pp(f, p); } } } cout << ans << endl; }