pub use __cargo_equip::prelude::*; use algebraic::{algebra, monoid, Monoid}; use modint::ModInt998244353 as Mint; #[allow(unused_imports)] use proconio::{ input, marker::{Bytes, Chars, Usize1}, }; use segment_tree::SegmentTree; algebra!(M, [[Mint; 5]; 5]); monoid!( M, [ [1.into(), 0.into(), 0.into(), 0.into(), 0.into()], [0.into(), 1.into(), 0.into(), 0.into(), 0.into()], [0.into(), 0.into(), 1.into(), 0.into(), 0.into()], [0.into(), 0.into(), 0.into(), 1.into(), 0.into()], [0.into(), 0.into(), 0.into(), 0.into(), 1.into()], ], |&a: &[[Mint; 5]; 5], &b: &[[Mint; 5]; 5]| { let mut c = [[Mint::new(0); 5]; 5]; for i in 0..5 { for j in 0..5 { for k in i..=j { c[i][j] += a[i][k] * b[k][j]; } } } c } ); fn main() { input! { _n: usize, q: usize, s: Bytes, } let mut a = s .into_iter() .map(|x| (x - b'0') as usize) .collect::>(); let mut b = [M::e(); 2]; b[0][0][1] += 1; b[0][0][2] += 1; b[0][1][2] += 1; b[0][3][4] += 1; b[1][0][1] += 1; b[1][2][3] += 1; b[1][2][4] += 1; b[1][3][4] += 1; let aa = a.iter().map(|&x| b[x]).collect::>(); let bb = a.iter().map(|&x| b[x ^ 1]).collect::>(); let mut seg1 = SegmentTree::::from(aa); let mut seg2 = SegmentTree::::from(bb); for _ in 0..q { input! { t: usize, } if t == 1 { input! { i: Usize1, } a[i] ^= 1; seg1.set(i, b[a[i]]); seg2.set(i, b[a[i] ^ 1]); } else { input! { l: Usize1, r: usize, } let res = seg1.prod(l..r)[0][4] + seg2.prod(l..r)[0][4]; println!("{}", res); } } } // The following code was expanded by `cargo-equip`. /// # Bundled libraries /// /// - `algebraic 0.1.0 (path+████████████████████████████████████████████████████████)` published in **missing** licensed under `CC0-1.0` as `crate::__cargo_equip::crates::algebraic` /// - `modint 0.1.0 (path+█████████████████████████████████████████████████████████)` published in **missing** licensed under `CC0-1.0` as `crate::__cargo_equip::crates::modint` /// - `segment-tree 0.1.0 (path+████████████████████████████████████████████████████████████████)` published in **missing** licensed under `CC0-1.0` as `crate::__cargo_equip::crates::segment_tree` #[cfg_attr(any(), rustfmt::skip)] #[allow(unused)] mod __cargo_equip { pub(crate) mod crates { pub mod algebraic {pub use crate::__cargo_equip::macros::algebraic::*;pub trait Algebra{type S;}pub trait Act:Algebra{type X;fn act(f:&Self::S,x:&Self::X)->Self::X;}pub trait Monoid:Algebra{fn e()->Self::S;fn op(x:&Self::S,y:&Self::S)->Self::S;}pub trait Group:Monoid{fn inv(x:&Self::S)->Self::S;}pub trait Zero{fn zero()->Self;fn is_zero(&self)->bool;}pub trait One{fn one()->Self;fn is_one(&self)->bool;}#[macro_export]macro_rules!__cargo_equip_macro_def_algebraic_algebra{($ident:ident,$ty:ty)=>{#[derive(Clone)]enum$ident{}impl$crate::__cargo_equip::crates::algebraic::Algebra for$ident{type S=$ty;}};}macro_rules!algebra{($($tt:tt)*)=>(crate::__cargo_equip_macro_def_algebraic_algebra!{$($tt)*})}#[macro_export]macro_rules!__cargo_equip_macro_def_algebraic_act{($ident:ident,$tar:ty,$act:expr)=>{impl$crate::__cargo_equip::crates::algebraic::Act for$ident{type X=$tar;#[inline]fn act(f:&Self::S,x:&Self::X)->Self::X{$act(f,x)}}};}macro_rules!act{($($tt:tt)*)=>(crate::__cargo_equip_macro_def_algebraic_act!{$($tt)*})}#[macro_export]macro_rules!__cargo_equip_macro_def_algebraic_monoid{($ident:ident,$e:expr,$op:expr)=>{impl$crate::__cargo_equip::crates::algebraic::Monoid for$ident{#[inline]fn e()->Self::S{$e}#[inline]fn op(x:&Self::S,y:&Self::S)->Self::S{$op(x,y)}}};}macro_rules!monoid{($($tt:tt)*)=>(crate::__cargo_equip_macro_def_algebraic_monoid!{$($tt)*})}#[macro_export]macro_rules!__cargo_equip_macro_def_algebraic_group{($ident:ident,$e:expr,$op:expr,$inv:expr)=>{impl$crate::__cargo_equip::crates::algebraic::Monoid for$ident{#[inline]fn e()->Self::S{$e}#[inline]fn op(x:&Self::S,y:&Self::S)->Self::S{$op(x,y)}}impl$crate::__cargo_equip::crates::algebraic::Group for$ident{#[inline]fn inv(x:&Self::S)->Self::S{$inv(x)}}};}macro_rules!group{($($tt:tt)*)=>(crate::__cargo_equip_macro_def_algebraic_group!{$($tt)*})}macro_rules!impl_zero_one{($($t:ty)*)=>{$(impl$crate::__cargo_equip::crates::algebraic::Zero for$t{fn zero()->Self{0}fn is_zero(&self)->bool{*self==0}}impl$crate::__cargo_equip::crates::algebraic::One for$t{fn one()->Self{1}fn is_one(&self)->bool{*self==1}})*};}impl_zero_one!(usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128);} pub mod modint {use crate::__cargo_equip::preludes::modint::*;use std::{fmt,hash::Hash,iter::{Product,Sum},num::ParseIntError,ops::{Add,AddAssign,Div,DivAssign,Mul,MulAssign,Neg,Sub,SubAssign},str::FromStr,sync::atomic::{self,AtomicU32,AtomicU64},};use algebraic::{One,Zero};#[derive(Clone,Copy,Default,PartialEq,Eq,Hash)]#[repr(transparent)]pub struct StaticModInt(u32);#[derive(Clone,Copy,Default,PartialEq,Eq,Hash)]#[repr(transparent)]pub struct DynamicModInt(u32);pub type ModInt998244353=StaticModInt<998_244_353>;pub type ModInt1000000007=StaticModInt<1_000_000_007>;pub trait ModInt:Default+Zero+One+FromStr+From+From+From+From+From+From+From+From+From+From+From+From+Copy+Eq+Hash+fmt::Display+fmt::Debug+Neg+Add+Sub+Mul+Div+AddAssign+SubAssign+MulAssign+DivAssign{fn modulus()->u32;fn raw(val:u32)->Self;fn val(self)->u32;fn inv(self)->Self;fn pow(self,k:usize)->Self;fn sqrt(self)->Option;}const fn mul(x:u32,y:u32,m:u32)->u32{(x as u64*y as u64%m as u64)as u32}const fn pow(x:u32,mut n:u32,m:u32)->u32{if m==1{return 0;}let mut r=1u64;let mut y=(x%m)as u64;while n!=0{if n&1!=0{r=r*y%m as u64;}y=y*y%m as u64;n>>=1;}r as u32}const fn is_prime(n:u32)->bool{match n{_ if n<=1=>return false,2|7|61=>return true,_ if n&1==0=>return false,_=>{}}let mut d=n-1;while d&1==0{d>>=1;}let a=[2,7,61];let mut i=0;while i<3{let mut t=d;let mut y=pow(a[i],t,n);while t!=n-1&&y!=1&&y!=n-1{y=(y as u64*y as u64%n as u64)as u32;t<<=1;}if y!=n-1&&t&1==0{return false;}i+=1;}true}const fn extgcd(mut a:u32,b:u32)->(u32,u32){a=a%b;if a==0{return(b,0);}let mut s=b as i64;let mut t=a as i64;let mut m0=0;let mut m1=1;while t!=0{let u=s/t;s-=t*u;m0-=m1*u;let tmp=s;s=t;t=tmp;let tmp=m0;m0=m1;m1=tmp;}if m0<0{m0+=b as i64/s;}(s as u32,m0 as u32)}const fn primitive_root(m:u32)->u32{match m{2=>return 1,167_772_161=>return 3,469_762_049=>return 3,754_974_721=>return 11,998_244_353=>return 3,_=>{}}let mut divs=[0;20];divs[0]=2;let mut cnt=1;let mut x=(m-1)/2;while x%2==0{x/=2;}let mut i=3;while ix as u64{break;}if x%i==0{divs[cnt]=i;cnt+=1;while x%i==0{x/=i;}}i+=2;}if x>1{divs[cnt]=x;cnt+=1;}let mut g=2;loop{let mut i=0;while i(u32,usize,[u32;30],[u32;30],[u32;30],[u32;30],[u32;30],[u32;30],){let g=primitive_root(m);let rank2=(m-1).trailing_zeros()as usize;let mut root=[0;30];let mut iroot=[0;30];let mut rate2=[0;30];let mut irate2=[0;30];let mut rate3=[0;30];let mut irate3=[0;30];root[rank2]=pow(g,(m-1)>>rank2,m);iroot[rank2]=extgcd(root[rank2],m).1;let mut i=rank2;while i>0{i-=1;root[i]=mul(root[i+1],root[i+1],m);iroot[i]=mul(iroot[i+1],iroot[i+1],m);}let mut prod=1;let mut iprod=1;let mut i=0;while i+2<=rank2{rate2[i]=mul(root[i+2],prod,m);irate2[i]=mul(iroot[i+2],iprod,m);prod=mul(prod,iroot[i+2],m);iprod=mul(iprod,root[i+2],m);i+=1;}let mut prod=1;let mut iprod=1;let mut i=0;while i+3<=rank2{rate3[i]=mul(root[i+3],prod,m);irate3[i]=mul(iroot[i+3],iprod,m);prod=mul(prod,iroot[i+3],m);iprod=mul(iprod,root[i+3],m);i+=1;}(g,rank2,root,iroot,rate2,irate2,rate3,irate3)}fn rat_convert(x:u64,m:u64,d:u64)->Option<(u64,u64)>{let n=m/(2*d);if x{let k=(x*l.1-m*l.0-1)/(m*r.0-x*r.1);l.0+=k*r.0;l.1+=k*r.1;l}std::cmp::Ordering::Equal=>return None,std::cmp::Ordering::Greater=>{let k=(m*r.0-x*r.1-1)/(x*l.1-m*l.0);r.0+=k*l.0;r.1+=k*l.1;r}};if q*xModInt for StaticModInt

{#[inline(always)]fn modulus()->u32{P}#[inline]fn raw(val:u32)->Self{Self(val)}#[inline]fn val(self)->u32{self.0}#[inline]fn inv(self)->Self{self.inv()}fn pow(self,k:usize)->Self{self.pow(k)}fn sqrt(self)->Option{self.sqrt()}}implStaticModInt

{#[inline]pub fn new>>(x:T)->Self{x.into()}#[inline(always)]pub fn modulus()->u32{P}#[inline]pub fn raw(val:u32)->Self{Self(val)}#[inline]pub fn val(self)->u32{self.0}#[inline]pub fn inv(self)->Self{assert_ne!(self.0,0);self.pow(P as usize-2)}pub fn pow(mut self,mut k:usize)->Self{let mut res=Self::from(1);while k!=0{if k&1!=0{res*=self;}k>>=1;self*=self;}res}pub fn sqrt(self)->Option{let p=Self::modulus()as usize;if self.val()<2{return Some(self);}else if self.pow(p-1>>1).val()!=1{return None;}let mut b=Self::from(1);while b.pow((p-1>>1)as usize).val()==1{b+=1;}let mut e=(p-1).trailing_zeros()as usize;let m=(p-1)>>e;let mut x=self.pow(m-1>>1);let mut y=self*x*x;x*=self;let mut z=b.pow(m);while y.val()!=1{let mut j=0;let mut t=y;while t.val()!=1{j+=1;t*=t;}z=z.pow(1<u32{BARRETT.modulus()}#[inline]fn raw(val:u32)->Self{Self(val)}#[inline]fn val(self)->u32{self.0}#[inline]fn inv(self)->Self{self.inv()}fn pow(self,k:usize)->Self{self.pow(k)}fn sqrt(self)->Option{self.sqrt()}}impl DynamicModInt{#[inline]pub fn new>(x:T)->Self{x.into()}#[inline(always)]pub fn modulus()->u32{BARRETT.modulus()}#[inline]pub fn raw(val:u32)->Self{Self(val)}#[inline]pub fn val(self)->u32{self.0}#[inline]pub fn inv(self)->Self{let(g,x)=extgcd(self.0,Self::modulus());assert_eq!(g,1);Self(x)}pub fn pow(mut self,mut k:usize)->Self{let mut res=Self::from(1);while k!=0{if k&1!=0{res*=self;}k>>=1;self*=self;}res}pub fn sqrt(self)->Option{let p=Self::modulus()as usize;if self.val()<2{return Some(self);}else if self.pow(p-1>>1).val()!=1{return None;}let mut b=Self::from(1);while b.pow((p-1>>1)as usize).val()==1{b+=1;}let mut e=(p-1).trailing_zeros()as usize;let m=(p-1)>>e;let mut x=self.pow(m-1>>1);let mut y=self*x*x;x*=self;let mut z=b.pow(m);while y.val()!=1{let mut j=0;let mut t=y;while t.val()!=1{j+=1;t*=t;}z=z.pow(1<Self{Self{m:AtomicU32::new(m),im:AtomicU64::new((!0/m as u64).wrapping_add(1)),}}#[inline]fn set(&self,m:u32){let im=(!0/m as u64).wrapping_add(1);self.m.store(m,atomic::Ordering::SeqCst);self.im.store(im,atomic::Ordering::SeqCst);}#[inline]fn modulus(&self)->u32{self.m.load(atomic::Ordering::SeqCst)}#[inline]fn mul(&self,a:u32,b:u32)->u32{let m=self.m.load(atomic::Ordering::SeqCst);let im=self.im.load(atomic::Ordering::SeqCst);let mut z=a as u64;z*=b as u64;let x=(((z as u128)*(im as u128))>>64)as u64;let mut v=z.wrapping_sub(x.wrapping_mul(m as u64))as u32;if m<=v{v=v.wrapping_add(m);}v}}static BARRETT:Barrett=Barrett::new(998_244_353);implFromStr for StaticModInt

{type Err=ParseIntError;fn from_str(s:&str)->Result{s.parse::().map(Self::from)}}impl FromStr for DynamicModInt{type Err=ParseIntError;fn from_str(s:&str)->Result{s.parse::().map(Self::from)}}implfmt::Display for StaticModInt

{fn fmt(&self,f:&mut fmt::Formatter<'_>)->fmt::Result{write!(f,"{}",self.0)}}impl fmt::Display for DynamicModInt{fn fmt(&self,f:&mut fmt::Formatter<'_>)->fmt::Result{write!(f,"{}",self.0)}}implfmt::Debug for StaticModInt

{fn fmt(&self,f:&mut fmt::Formatter<'_>)->fmt::Result{if let Some((num,den))=rat_convert(self.0 as u64,P as u64,1025){write!(f,"{}",num)?;if den!=1{write!(f,"/{}",den)?;}}else if let Some((num,den))=rat_convert((P-self.0)as u64,P as u64,1025){write!(f,"-{}",num)?;if den!=1{write!(f,"/{}",den)?;}}else{write!(f,"{}",self.0)?;}Ok(())}}impl fmt::Debug for DynamicModInt{fn fmt(&self,f:&mut fmt::Formatter<'_>)->fmt::Result{write!(f,"{}",self.0)}}macro_rules!impl_from_integer{($(($t1:ty,$t2:ty)),*)=>{$(implFrom<$t1>for StaticModInt

{fn from(x:$t1)->Self{Self((x as$t2).rem_euclid(P as$t2)as u32)}}impl From<$t1>for DynamicModInt{fn from(x:$t1)->Self{Self((x as$t2).rem_euclid(Self::modulus()as$t2)as u32)}})*};}impl_from_integer!((i8,i32),(i16,i32),(i32,i32),(i64,i64),(isize,i64),(i128,i128),(u8,u32),(u16,u32),(u32,u32),(u64,u64),(usize,u64),(u128,u128));impl>AddAssignfor StaticModInt

{fn add_assign(&mut self,rhs:T){self.0+=rhs.into().0;if self.0>=P{self.0-=P;}}}impl>AddAssignfor DynamicModInt{fn add_assign(&mut self,rhs:T){self.0+=rhs.into().0;if self.0>=Self::modulus(){self.0-=Self::modulus();}}}impl>SubAssignfor StaticModInt

{fn sub_assign(&mut self,rhs:T){let rhs=rhs.into().0;if self.0>SubAssignfor DynamicModInt{fn sub_assign(&mut self,rhs:T){let rhs=rhs.into().0;if self.0>MulAssignfor StaticModInt

{fn mul_assign(&mut self,rhs:T){*self=Self((self.0 as u64*rhs.into().0 as u64%P as u64)as u32);}}impl>MulAssignfor DynamicModInt{fn mul_assign(&mut self,rhs:T){*self=Self(BARRETT.mul(self.0,rhs.into().0));}}impl>DivAssignfor StaticModInt

{fn div_assign(&mut self,rhs:T){*self*=rhs.into().inv()}}impl>DivAssignfor DynamicModInt{fn div_assign(&mut self,rhs:T){*self=*self*rhs.into().inv()}}implNeg for StaticModInt

{type Output=Self;fn neg(self)->Self::Output{if self.0==0{Self(0)}else{Self(P-self.0)}}}impl Neg for DynamicModInt{type Output=Self;fn neg(self)->Self::Output{if self.0==0{Self(0)}else{Self(Self::modulus()-self.0)}}}implNeg for&StaticModInt

{type Output=StaticModInt

;fn neg(self)->Self::Output{if self.0==0{StaticModInt(0)}else{StaticModInt(P-self.0)}}}impl Neg for&DynamicModInt{type Output=DynamicModInt;fn neg(self)->Self::Output{if self.0==0{DynamicModInt(0)}else{DynamicModInt(DynamicModInt::modulus()-self.0)}}}macro_rules!impl_ops{($($trait:ident,$trait_assign:ident,$fn:ident,$fn_assign:ident,)*)=>{$(impl$trait_assign<&StaticModInt

>for StaticModInt

{fn$fn_assign(&mut self,rhs:&StaticModInt

){self.$fn_assign(*rhs);}}impl>>$traitfor StaticModInt

{type Output=StaticModInt

;fn$fn(mut self,rhs:T)->Self::Output{self.$fn_assign(rhs.into());self}}impl$trait<&StaticModInt

>for StaticModInt

{type Output=StaticModInt

;fn$fn(self,rhs:&StaticModInt

)->Self::Output{self.$fn(*rhs)}}impl>>$traitfor&StaticModInt

{type Output=StaticModInt

;fn$fn(self,rhs:T)->Self::Output{(*self).$fn(rhs.into())}}impl$trait<&StaticModInt

>for&StaticModInt

{type Output=StaticModInt

;fn$fn(self,rhs:&StaticModInt

)->Self::Output{(*self).$fn(*rhs)}}impl$trait_assign<&DynamicModInt>for DynamicModInt{fn$fn_assign(&mut self,rhs:&DynamicModInt){self.$fn_assign(*rhs);}}impl>$traitfor DynamicModInt{type Output=DynamicModInt;fn$fn(mut self,rhs:T)->Self::Output{self.$fn_assign(rhs.into());self}}impl$trait<&DynamicModInt>for DynamicModInt{type Output=DynamicModInt;fn$fn(self,rhs:&DynamicModInt)->Self::Output{self.$fn(*rhs)}}impl>$traitfor&DynamicModInt{type Output=DynamicModInt;fn$fn(self,rhs:T)->Self::Output{(*self).$fn(rhs.into())}}impl$trait<&DynamicModInt>for&DynamicModInt{type Output=DynamicModInt;fn$fn(self,rhs:&DynamicModInt)->Self::Output{(*self).$fn(*rhs)}})*};}impl_ops!{Add,AddAssign,add,add_assign,Sub,SubAssign,sub,sub_assign,Mul,MulAssign,mul,mul_assign,Div,DivAssign,div,div_assign,}implSum for StaticModInt

{fn sum>(iter:I)->Self{iter.fold(Self::raw(0),|b,x|b+x)}}implProduct for StaticModInt

{fn product>(iter:I)->Self{iter.fold(Self::from(1),|b,x|b*x)}}impl<'a,const P:u32>Sum<&'a Self>for StaticModInt

{fn sum>(iter:I)->Self{iter.fold(Self::raw(0),|b,x|b+x)}}impl<'a,const P:u32>Product<&'a Self>for StaticModInt

{fn product>(iter:I)->Self{iter.fold(Self::from(1),|b,x|b*x)}}implStaticModInt

{pub const G:u32=ntt_info(P).0;pub const RANK2:usize=ntt_info(P).1;pub const ROOT:[u32;30]=ntt_info(P).2;pub const IROOT:[u32;30]=ntt_info(P).3;pub const RATE2:[u32;30]=ntt_info(P).4;pub const IRATE2:[u32;30]=ntt_info(P).5;pub const RATE3:[u32;30]=ntt_info(P).6;pub const IRATE3:[u32;30]=ntt_info(P).7;pub const IS_NTT_FRIENDLY:bool=is_prime(P)&&Self::RANK2>=21;}implZero for StaticModInt

{fn zero()->Self{Self(0)}fn is_zero(&self)->bool{self.0==0}}implOne for StaticModInt

{fn one()->Self{Self::new(1)}fn is_one(&self)->bool{self==&Self::one()}}impl Zero for DynamicModInt{fn zero()->Self{Self(0)}fn is_zero(&self)->bool{self.0==0}}impl One for DynamicModInt{fn one()->Self{Self::new(1)}fn is_one(&self)->bool{self==&Self::one()}}} pub mod segment_tree {use crate::__cargo_equip::preludes::segment_tree::*;use std::ops::{Bound,RangeBounds};use algebraic::Monoid;#[derive(Clone)]pub struct SegmentTreewhere M:Monoid,M::S:Clone,{n:usize,v:Vec,}implSegmentTreewhere M:Monoid,M::S:Clone,{pub fn new(n:usize)->Self{Self{n,v:vec![M::e();n*2],}}pub fn set(&mut self,mut k:usize,x:M::S){k+=self.n;self.v[k]=x;while k>1{k>>=1;self.v[k]=M::op(&self.v[k*2],&self.v[k*2+1]);}}pub fn get(&self,k:usize)->M::S{assert!(k(&self,range:R)->M::S where R:RangeBounds,{let mut l=match range.start_bound(){Bound::Excluded(&l)=>l+1,Bound::Included(&l)=>l,Bound::Unbounded=>0,};let mut r=match range.end_bound(){Bound::Excluded(&r)=>r,Bound::Included(&r)=>r+1,Bound::Unbounded=>self.n,};assert!(l<=r);assert!(r<=self.n);l+=self.n;r+=self.n;let mut sl=M::e();let mut sr=M::e();while l>=1;r>>=1;}M::op(&sl,&sr)}pub fn max_right

(&self,mut l:usize,pred:P)->usize where P:Fn(&M::S)->bool,{assert!(l<=self.n);assert!(pred(&M::e()));if pred(&self.prod(l..)){return self.n;}l+=self.n;let mut s=M::e();loop{while l&1==0&&self.is_good_node(l>>1){l>>=1;}if!pred(&M::op(&s,&self.v[l])){while l(&self,mut r:usize,pred:P)->usize where P:Fn(&M::S)->bool,{assert!(r<=self.n);assert!(pred(&M::e()));if pred(&self.prod(..r)){return 0;}r+=self.n;let mut s=M::e();loop{r-=1;while!self.is_good_node(r){r=r*2+1;}while r&1!=0&&self.is_good_node(r>>1){r>>=1;}if!pred(&M::op(&self.v[r],&s)){while rbool{if k>=self.n{true}else{let d=k.leading_zeros()-self.n.leading_zeros();self.n>>d!=k||self.n>>d<From>for SegmentTreewhere M:Monoid,M::S:Clone,{fn from(mut a:Vec)->Self{let n=a.len();let mut v=vec![M::e();n];v.append(&mut a);for i in(1..n).rev(){v[i]=M::op(&v[i*2],&v[i*2+1]);}Self{n,v}}}} } pub(crate) mod macros { pub mod algebraic {pub use crate::{__cargo_equip_macro_def_algebraic_act as act,__cargo_equip_macro_def_algebraic_algebra as algebra,__cargo_equip_macro_def_algebraic_group as group,__cargo_equip_macro_def_algebraic_monoid as monoid};} pub mod modint {} pub mod segment_tree {} } pub(crate) mod prelude {pub use crate::__cargo_equip::crates::*;} mod preludes { pub mod algebraic {} pub mod modint {pub(in crate::__cargo_equip)use crate::__cargo_equip::crates::algebraic;} pub mod segment_tree {pub(in crate::__cargo_equip)use crate::__cargo_equip::crates::algebraic;} } }