// QCFium 法 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(5); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define YES(b) {cout << ((b) ? "YES\n" : "NO\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 矩形内判定 // 汎用関数の定義 template inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline T get(T set, int i) { return (set >> i) & T(1); } // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif #include using Bint = boost::multiprecision::cpp_int; void zikken() { // 係数列を前もって計算しておく. int N = 200; vector> f(N + 1); f[0] = vector{ 1 }; repi(n, 1, N) { f[n].resize(n + 1); rep(i, n) f[n][i + 1] -= 2 * n * f[n - 1][i]; repi(i, 1, n - 1) { f[n][i - 1] += i * f[n - 1][i]; f[n][i + 1] += i * f[n - 1][i]; } repi(i, 0, n) f[n][i] /= n; } // dumpel(f); vector pow100000(N + 1); pow100000[0] = 1; rep(n, N) pow100000[n + 1] = pow100000[n] * 100000; repi(n, 1, N) repi(i, 0, n) f[n][i] *= pow100000[n - i]; vd ans; int t; // cin >> t; t = 100001; rep(hoge, t) { int n; double x; // cin >> n >> x; n = 200; x = hoge * 0.00001; if (n == 0) { cout << 1 << "\n"; continue; } Bint X((int)(x * 100000 + (x > 0 ? 0.1 : -0.1))); Bint X2 = X * X; // ここが TLE しそうだが・・・ Bint Res = 0; for (int i = n; i >= 0; i -= 2) { Res *= X2; Res += f[n][i]; } if (n & 1) Res *= X; double res = static_cast(Res / pow100000[n - 1]); res /= pow(x * x + 1, n / 2.) * 100000.; // cout << res << "\n"; ans.push_back(res); } // dump(ans); int K = sz(ans); int W = 120; double d_max = 0; //rep(k, K) { // int i = k / W * W; // int j = i + W; // if (j >= K) break; // double val = ans[i] + (ans[j] - ans[i]) / W * (k - i); // chmax(d_max, abs(ans[k] - val)); //} //dump(d_max); // W=40: 線形補間 0.0008114 rep(k, K - 2 * W) { int i0, i1, i2; if (k % W <= W / 2) { i1 = k / W * W; i0 = i1 - W; i2 = i1 + W; if (i0 < 0) { i0 += W; i1 += W; i2 += W; } } else { i0 = k / W * W; i1 = i0 + W; i2 = i1 + W; if (i2 >= K) { i0 -= W; i1 -= W; i2 -= W; } } double y0 = ans[i0]; double y1 = ans[i1]; double y2 = ans[i2]; int i = k - i0; double val = (2 * W * W * y0 - i * W * (3 * y0 - 4 * y1 + y2) + i * i * (y0 - 2 * y1 + y2)) / (2 * W * W); chmax(d_max, abs(ans[k] - val)); } dump(d_max); // W=100: 二次補間 0.000548767 exit(0); } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); zikken(); // 係数列を前もって計算しておく. int N = 200; vector> f(N + 1); f[0] = vector{ 1 }; repi(n, 1, N) { f[n].resize(n + 1); rep(i, n) f[n][i + 1] -= 2 * n * f[n - 1][i]; repi(i, 1, n - 1) { f[n][i - 1] += i * f[n - 1][i]; f[n][i + 1] += i * f[n - 1][i]; } repi(i, 0, n) f[n][i] /= n; } vector pow100000(N + 1); pow100000[0] = 1; rep(n, N) pow100000[n + 1] = pow100000[n] * 100000; repi(n, 1, N) repi(i, 0, n) f[n][i] *= pow100000[n - i]; constexpr int W = 140; // 120 だと精度は足りるが TLE,140 だと間に合いはするが精度不足で WA // 標本点 double sol[201][200000 / W + 2]; repi(n, 1, 200) { for (int X_int = -100000; X_int <= 100000 + W; X_int += W) { Bint X = X_int; Bint X2 = X * X; Bint Res = 0; for (int i = n; i >= 0; i -= 2) { Res *= X2; Res += f[n][i]; } if (n & 1) Res *= X; double val = static_cast(Res / pow100000[n - 1]); double x = X_int / 100000.; val /= pow(x * x + 1, n / 2.) * 100000.; sol[n][X_int / W + 100000 / W] = val; } } // dumpel(sol); int t; cin >> t; rep(hoge, t) { int n; double x; cin >> n >> x; if (n == 0) { cout << 1 << "\n"; continue; } int X_int((int)(x * 100000 + (x > 0 ? 0.1 : -0.1))); int R = (X_int + 100000) % W; int i0, i1, i2; if (R % W <= W / 2) { i1 = X_int - R; i0 = i1 - W; i2 = i1 + W; if (i0 < 0) { i0 += W; i1 += W; i2 += W; } } else { i0 = X_int - R; i1 = i0 + W; i2 = i1 + W; if (i2 > 100000) { i0 -= W; i1 -= W; i2 -= W; } } double y0 = sol[n][i0 / W + 100000 / W]; double y1 = sol[n][i1 / W + 100000 / W]; double y2 = sol[n][i2 / W + 100000 / W]; int i = X_int - i0; // 2 次多項式補間 double val = (2 * W * W * y0 - i * W * (3 * y0 - 4 * y1 + y2) + i * i * (y0 - 2 * y1 + y2)) / (2 * W * W); cout << val << "\n"; } }