#include #include using namespace std; namespace my{ #define eb emplace_back #define RD(T,...) T __VA_ARGS__;lin(__VA_ARGS__) #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define FO(n) for(ll ij=n;ij--;) #define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i=i##stop;i-=i##step) #define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a) #define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{ void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<constexpr auto range(bool s,A...a){arrayr{0,0,1};ll I=0;((r[I++]=a),...);if(!s&&I==1)swap(r[0],r[1]);r[0]-=s;return r;} constexpr char nl=10; constexpr char sp=32; auto min(const auto&...a){return min(initializer_list>{a...});} templatestruct pair{ A a;B b; pair()=default; pair(A a,B b):a(a),b(b){} pair(const std::pair&p):a(p.first),b(p.second){} auto operator<=>(const pair&)const=default; friend ostream&operator<<(ostream&o,const pair&p){return o<ostream&operator<<(ostream&o,const std::pair&p){return o<concept vectorial=is_base_of_v,V>; templatestruct vec_attr{using core_type=T;static constexpr int d=0;}; templatestruct vec_attr{using core_type=typename vec_attr::core_type;static constexpr int d=vec_attr::d+1;}; templateusing core_t=vec_attr::core_type; templateistream&operator>>(istream&i,vector&v){fe(v,e)i>>e;return i;} templateostream&operator<<(ostream&o,const vector&v){fe(v,e)o<?nl:sp);return o;} templatestruct vec:vector{ using vector::vector; vec(const vector&v){vector::operator=(v);} vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;} vec operator^(const vec&u)const{return vec{*this}^=u;} vec&operator++(){fe(*this,e)++e;return*this;} vec&operator--(){fe(*this,e)--e;return*this;} vec operator-()const{vec v=*this;fe(v,e)e=-e;return v;} auto scan(const auto&f)const{pair,bool>r{};fe(*this,e)if constexpr(!vectorial)r.b?f(r.a,e),r:r={e,1};else if(auto s=e.scan(f);s.b)r.b?f(r.a,s.a),r:r=s;return r;} auto min()const{return scan([](auto&a,const auto&b){a>b?a=b:0;;}).a;} vec zeta()const{vec v=*this;if constexpr(vectorial)fe(v,e)e=e.zeta();fo(i,v.size()-1)v[i+1]+=v[i];return v;} }; void lin(auto&...a){(cin>>...>>a);} templatevoid pp(const auto&...a){ll n=sizeof...(a);((cout<0,c)),...);cout<prime_enumerate(ll n){ vecsieve(n/3+1,1); for(ll p=5,d=4,i=1,rn=sqrt_floor(n);p<=rn;p+=d=6-d,i++){ if(!sieve[i])continue; for(ll q=(p*p)/3,r=d*p/3+(d*p%3==2),s=p*2;q<(ll)sieve.size();q+=r=s-r)sieve[q]=0; } vecr{2,3}; for(ll p=5,d=4,i=1;p<=n;p+=d=6-d,i++)if(sieve[i])r.eb(p); while(r.size()&&r.back()>n)r.pop_back(); return r; } vecis_prime_table(ll n){vecr(n+1);fe(prime_enumerate(n),p)r[p]=1;return r;} struct prime_count{ ll N,R; vecprimes,prime_num; prime_count(ll N):N(N),R(sqrt_floor(N)){ primes=prime_enumerate(R); primes.emplace(primes.begin(),ll{}); prime_num=is_prime_table(R).zeta(); } ll phi(ll x,ll a){ if(a==0)return x; if(x<=R&&x<=primes[a]*primes[a]*primes[a])return pi(x)-a+1+P2(x,a); return phi(x,a-1)-phi(x/primes[a],a-1); } ll P2(ll x,ll a){ ll A=pi(sqrt_floor(x)); ll r=min(a*(a-1)/2-A*(A-1)/2,0); fo(b,a+1,A+1)r+=pi(x/primes[b]); return r; } ll pi(ll x){ if(x<=R)return prime_num[x]; ll a=pi(cbrt_floor(x)); return phi(x,a)+a-1-P2(x,a); } }; single_testcase void solve(){ auto primes=prime_enumerate(1e5); vecprime_count(1e5); fe(primes,p)prime_count[p]=1; prime_count=prime_count.zeta(); LL(T); fo(T){ LL(N); RD(ld,P,Q); P/=100;Q/=100; ld prime_probability=(ld)prime_count[N]/N; ld x=prime_probability*P; ld y=(1-prime_probability)*(1-Q); pp(x/(x+y)); } }}