#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint998244353;
//using mint = static_modint<1000000007>;
using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(...)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif


//【mint → 有理数】(実験用)
/*
* x を分母と分子の絶対値が v_max 以下の有理数表示に変換する(不可能ならそのまま)
*/
string mint_to_frac(mint x, int v_max = 31595) {
	// verify : https://www.codechef.com/problems/SUMOVERALL

	repi(dnm, 1, v_max) {
		int num = (x * dnm).val();
		if (num == 0) {
			return "0";
		}
		if (num <= v_max) {
			if (dnm == 1) return to_string(num);
			return to_string(num) + "/" + to_string(dnm);
		}
		if (mint::mod() - num <= v_max) {
			if (dnm == 1) return "-" + to_string(mint::mod() - num);
			return "-" + to_string(mint::mod() - num) + "/" + to_string(dnm);
		}
	}

	return to_string(x.val());
}


// さすがに間に合わない.ていうか思いっきり誤読してた.
void WA() {
	int h, w; ll k; int m;
	cin >> h >> w >> k >> m;

	mint::set_mod(m);

	dump(mint_to_frac(499122177));
	dump(mint_to_frac(249561091)); // 11/4
	dump(0 + 1 + 1 + 1 + (1 + 1) + 4 + 4 + 9);

	int n = h * w;

	vm pow_i(n + 1);
	repi(i, 0, n) pow_i[i] = mint(i).pow(k);

	mint res = 0;

	repb(set, n) {
		dsu d(n); mint val = 0;

		rep(i, h) rep(j, w - 1) {
			if (!getb(set, i * w + j)) continue;
			if (!getb(set, i * w + (j + 1))) continue;
			d.merge(i * w + j, i * w + (j + 1));
		}

		rep(i, h - 1) rep(j, w) {
			if (!getb(set, i * w + j)) continue;
			if (!getb(set, (i + 1) * w + j)) continue;
			d.merge(i * w + j, (i + 1) * w + j);
		}

		auto gs = d.groups();

		repe(g, gs) {
			if (sz(g) == 1 && !getb(set, g[0])) continue;
			val += pow_i[sz(g)];
		}

//		dump(set, val);

		res += val;
	}

	res /= mint(2).pow(n);

	EXIT(res);
}


//【累乗(mint 利用)】
/*
* Pow_mint(mint B, int n) : O(n)
*	底を B とし,B^0 から B^n まで計算可能として初期化する.
*
* build_neg() : O(n)
*	B^(-1) から B^(-n) も計算可能にする.
*	制約 : B は mint の法と互いに素
*
* mint [](int i) : O(1)
*	B^i を返す.
*/
class Pow_mint {
	int n;
	vm powB, powB_inv;

public:
	Pow_mint(mint B, int n) : n(max(n, 2)) {
		// verify : https://yukicoder.me/problems/no/2709

		// B の累乗を計算する.
		powB.resize(n + 1);
		powB[0] = 1;
		rep(i, n) powB[i + 1] = powB[i] * B;
	};
	Pow_mint() : n(0) {}

	// 負冪も計算できるようにする.
	void build_neg() {
		// verify : https://atcoder.jp/contests/arc116/tasks/arc116_b

		// B の逆元の累乗を計算する.
		mint invB = powB[1].inv();
		powB_inv.resize(n + 1);
		powB_inv[0] = 1;
		rep(i, n) powB_inv[i + 1] = powB_inv[i] * invB;
	}

	// B^i を返す.
	mint const& operator[](int i) const {
		// verify : https://atcoder.jp/contests/arc116/tasks/arc116_b

		Assert(abs(i) <= n);

		return i >= 0 ? powB[i] : powB_inv[-i];
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const Pow_mint& pw) {
		os << pw.powB << endl;
		os << pw.powB_inv << endl;
		return os;
	}
#endif
};


// AC51, TLE16.後は高速化だけだ
mint TLE(int h, int w, ll k, int m) {
	mint::set_mod(m);

	int n = h * w;

	vm pow_i(n + 1);
	repi(i, 0, n) pow_i[i] = mint(i).pow(k);

	vvm bin(n + 1, vm(n + 1));
	bin[0][0] = 1;
	repi(i, 1, n) repi(j, 0, i) {
		if (j > 0) bin[i][j] += bin[i - 1][j - 1];
		if (j < i) bin[i][j] += bin[i - 1][j];
	}

	vvm bin_inv(n + 1, vm(n + 1));
	repi(i, 0, n) repi(j, 0, i) {
		bin_inv[i][j] = bin[i][j].inv();
	}

	Pow_mint pow2(2, n);
	pow2.build_neg();

	vm inv(n + 1);
	repi(i, 1, n) inv[i] = mint(i).inv();

	mint res = 0;

	// ひとまず bit 全探索.もしや連結 DP 的なことしないとだめ?
	repb(set, n) {
		if (set == 0) continue;

		vvi a(h, vi(w));
		rep(i, h) rep(j, w) a[i][j] = getb(set, i * w + j);

		dsu d(n); int x0 = 0, y0 = 0;

		rep(i, h) rep(j, w - 1) {
			if (!a[i][j]) continue;
			x0 = i, y0 = j;
			if (!a[i][j + 1]) continue;
			d.merge(i * w + j, i * w + (j + 1));
		}
		rep(i, h - 1) rep(j, w) {
			if (!a[i][j]) continue;
			x0 = i, y0 = j;
			if (!a[i + 1][j]) continue;
			d.merge(i * w + j, (i + 1) * w + j);
		}

		int pc = popcount(set);
		if (d.size(x0 * w + y0) != pc) continue;

		rep(i, h) {
			rep(j, w - 1) {
				if (a[i][j] != 0) continue;
				if (a[i][j + 1] == 1) a[i][j] = -1;
			}
			repi(j, 1, w - 1) {
				if (a[i][j] != 0) continue;
				if (a[i][j - 1] == 1) a[i][j] = -1;
			}
		}
		rep(j, w) {
			rep(i, h - 1) {
				if (a[i][j] != 0) continue;
				if (a[i + 1][j] == 1) a[i][j] = -1;
			}
			repi(i, 1, h - 1) {
				if (a[i][j] != 0) continue;
				if (a[i - 1][j] == 1) a[i][j] = -1;
			}
		}

		int cnt = 0;
		rep(i, h) rep(j, w) cnt += a[i][j] != 0;

		repi(k, 1, n) {
			mint p0 = bin_inv[n][k] * pow2[-k];
			mint w1 = pow2[k - cnt] * bin[n][k] * inv[n - k + 1];
			res += p0 * w1 * pow_i[pc];
		}
	}

	return res;
}


//【有理数】
/*
* Frac<T>() : O(1)
*	0 で初期化する.
*	制約:T は int, ll, __int128, boost::multiprecision::int256_t 等
*
* Frac<T>(T num) : O(1)
*	num で初期化する.
*
* Frac<T>(T num, T dnm) : O(1)
*	num / dnm で初期化する(分母は自動的に正にする)
*
* a == b, a != b, a < b, a > b, a <= b, a >= b : O(1)
*	大小比較を行う(分母が共通の場合は積はとらない)
*
* a + b, a - b, a * b, a / b : O(1)
*	加減乗除を行う(和と差については,分母が共通の場合は積はとらない)
*	一方が整数でも構わない.複合代入演算子も使用可.
*
* reduction() : O(log min(num, dnm))
*	自身の約分を行う.
*
* together(Frac& a, Frac& b) : O(log min(a.dnm, b.dnm))
*	a と b を通分する.
*
* together(vector<Frac>& as) : O(|as| log dnm)
*	as を通分する.
*
* T floor() : O(1)
*	自身の floor を返す.
*
* T ceil() : O(1)
*	自身の ceil を返す.
*
* bool integerQ() : O(1)
*	自身が整数かを返す.
*/
template <class T = ll>
struct Frac {
	// 分子,分母
	T num, dnm;

	// コンストラクタ
	Frac() : num(0), dnm(1) {}
	Frac(T num) : num(num), dnm(1) {}
	Frac(T num_, T dnm_) : num(num_), dnm(dnm_) {
		// verify : https://atcoder.jp/contests/abc244/tasks/abc244_h

		Assert(dnm != 0);
		if (dnm < 0) { num *= -1; dnm *= -1; }
	}

	// 代入
	Frac(const Frac& b) = default;
	Frac& operator=(const Frac& b) = default;

	// キャスト
	operator double() const { return (double)num / (double)dnm; }

	// 比較
	bool operator==(const Frac& b) const {
		// 分母が等しいときはオーバーフロー防止のために掛け算はせず比較する.
		if (dnm == b.dnm) return num == b.num;
		return num * b.dnm == b.num * dnm;
	}
	bool operator!=(const Frac& b) const { return !(*this == b); }
	bool operator<(const Frac& b) const {
		// verify : https://atcoder.jp/contests/abc308/tasks/abc308_c

		// 分母が等しいときはオーバーフロー防止のために掛け算はせず比較する.
		if (dnm == b.dnm) return num < b.num;
		return (num * b.dnm < b.num * dnm);
	}
	bool operator>=(const Frac& b) const { return !(*this < b); }
	bool operator>(const Frac& b) const { return b < *this; }
	bool operator<=(const Frac& b) const { return !(*this > b); }

	// 整数との比較
	bool operator==(T b) const { return num == b * dnm; }
	bool operator!=(T b) const { return num != b * dnm; }
	bool operator<(T b) const { return num < b * dnm; }
	bool operator>=(T b) const { return num >= b * dnm; }
	bool operator>(T b) const { return num > b * dnm; }
	bool operator<=(T b) const { return num <= b * dnm; }
	friend bool operator==(T a, const Frac& b) { return a * b.dnm == b.num; }
	friend bool operator!=(T a, const Frac& b) { return a * b.dnm != b.num; }
	friend bool operator<(T a, const Frac& b) { return a * b.dnm < b.num; }
	friend bool operator>=(T a, const Frac& b) { return a * b.dnm >= b.num; }
	friend bool operator>(T a, const Frac& b) { return a * b.dnm > b.num; }
	friend bool operator<=(T a, const Frac& b) { return a * b.dnm <= b.num; }

	// 四則演算
	Frac& operator+=(const Frac& b) {
		// verify : https://www.codechef.com/problems/ARCTR

		// 分母が等しいときはオーバーフロー防止のために掛け算はせず加算する.
		if (dnm == b.dnm) num += b.num;
		else { num = num * b.dnm + b.num * dnm; dnm *= b.dnm; }
		return *this;
	}
	Frac& operator-=(const Frac& b) {
		// verify : https://www.codechef.com/problems/ARCTR

		// 分母が等しいときはオーバーフロー防止のために掛け算はせず加算する.
		if (dnm == b.dnm) num -= b.num;
		else { num = num * b.dnm - b.num * dnm; dnm *= b.dnm; }
		return *this;
	}
	Frac& operator*=(const Frac& b) { num *= b.num; dnm *= b.dnm; return *this; }
	Frac& operator/=(const Frac& b) {
		// verify : https://atcoder.jp/contests/abc301/tasks/abc301_g

		Assert(b.num != 0);
		num *= b.dnm; dnm *= b.num;
		if (dnm < 0) { num *= -1; dnm *= -1; }
		return *this;
	}
	Frac operator+(const Frac& b) const { Frac a = *this; return a += b; }
	Frac operator-(const Frac& b) const { Frac a = *this; return a -= b; }
	Frac operator*(const Frac& b) const { Frac a = *this; return a *= b; }
	Frac operator/(const Frac& b) const { Frac a = *this; return a /= b; }
	Frac operator-() const { return Frac(*this) *= Frac(-1); }

	// 整数との四則演算
	Frac& operator+=(T c) { num += dnm * c; return *this; }
	Frac& operator-=(T c) { num -= dnm * c; return *this; }
	Frac& operator*=(T c) { num *= c; return *this; }
	Frac& operator/=(T c) {
		Assert(c != T(0));
		dnm *= c;
		if (dnm < 0) { num *= -1; dnm *= -1; }
		return *this;
	}
	Frac operator+(T c) const { Frac a = *this; return a += c; }
	Frac operator-(T c) const { Frac a = *this; return a -= c; }
	Frac operator*(T c) const { Frac a = *this; return a *= c; }
	Frac operator/(T c) const { Frac a = *this; return a /= c; }
	friend Frac operator+(T c, const Frac& a) { return a + c; }
	friend Frac operator-(T c, const Frac& a) { return Frac(c) - a; }
	friend Frac operator*(T c, const Frac& a) { return a * c; }
	friend Frac operator/(T c, const Frac& a) { return Frac(c) / a; }

	// 約分を行う.
	void reduction() {
		// verify : https://atcoder.jp/contests/abc229/tasks/abc229_h

		auto g = gcd(num, dnm);
		num /= g; dnm /= g;
	}

	// a と b を通分する.
	friend void together(Frac& a, Frac& b) {
		// verify : https://atcoder.jp/contests/abc229/tasks/abc229_h

		T dnm = lcm(a.dnm, b.dnm);
		a.num *= dnm / a.dnm; a.dnm = dnm;
		b.num *= dnm / b.dnm; b.dnm = dnm;
	}

	// as を通分する.
	friend void together(vector<Frac>& as) {
		// verify : https://yukicoder.me/problems/617

		T dnm = 1;
		repe(a, as) dnm = lcm(dnm, a.dnm);

		repea(a, as) {
			a.num *= dnm / a.dnm;
			a.dnm = dnm;
		}
	}

	// 自身の floor を返す.
	T floor() const {
		// verify : https://www.codechef.com/problems/LINEFIT?tab=statement

		if (num >= 0) return num / dnm;
		else return -((-num + dnm - 1) / dnm);
	}

	// 自身の ceil を返す.
	T ceil() const {
		// verify : https://www.codechef.com/problems/LINEFIT?tab=statement

		if (num >= 0) return (num + dnm - 1) / dnm;
		else return -((-num) / dnm);
	}

	// 自身が整数かを返す.
	bool integerQ() const {
		// verify : https://atcoder.jp/contests/ttpc2022/tasks/ttpc2022_g

		return num % dnm == 0;
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const Frac& a) { os << a.num << '/' << a.dnm; return os; }
#endif
};


using F = Frac<ll>;
vector<F> umekomi_sub(int h, int w) {	
	int n = h * w;

	vvl bin(n + 1, vl(n + 1));
	bin[0][0] = 1;
	repi(i, 1, n) repi(j, 0, i) {
		if (j > 0) bin[i][j] += bin[i - 1][j - 1];
		if (j < i) bin[i][j] += bin[i - 1][j];
	}

	vector<F> coef(n + 1);

	repb(set, n) {
		if (set == 0) continue;

		vvi a(h, vi(w));
		rep(i, h) rep(j, w) a[i][j] = getb(set, i * w + j);

		dsu d(n); int x0 = 0, y0 = 0;

		rep(i, h) rep(j, w - 1) {
			if (!a[i][j]) continue;
			x0 = i, y0 = j;
			if (!a[i][j + 1]) continue;
			d.merge(i * w + j, i * w + (j + 1));
		}
		rep(i, h - 1) rep(j, w) {
			if (!a[i][j]) continue;
			x0 = i, y0 = j;
			if (!a[i + 1][j]) continue;
			d.merge(i * w + j, (i + 1) * w + j);
		}

		int pc = popcount(set);
		if (d.size(x0 * w + y0) != pc) continue;

		rep(i, h) {
			rep(j, w - 1) {
				if (a[i][j] != 0) continue;
				if (a[i][j + 1] == 1) a[i][j] = -1;
			}
			repi(j, 1, w - 1) {
				if (a[i][j] != 0) continue;
				if (a[i][j - 1] == 1) a[i][j] = -1;
			}
		}
		rep(j, w) {
			rep(i, h - 1) {
				if (a[i][j] != 0) continue;
				if (a[i + 1][j] == 1) a[i][j] = -1;
			}
			repi(i, 1, h - 1) {
				if (a[i][j] != 0) continue;
				if (a[i - 1][j] == 1) a[i][j] = -1;
			}
		}

		int cnt = 0;
		rep(i, h) rep(j, w) cnt += a[i][j] != 0;

		repi(t, 1, n) {
			coef[pc] += F(1, (ll)(n - t + 1) << cnt);
			coef[pc].reduction();
		}
	}

	return coef;
}


int N = 25;
void umekomi() {
	cout << "vvl coef = {" << endl;
	repi(h, 1, N) repi(w, 1, min(N / h, h)) {
		dump(h, w);

		auto c = umekomi_sub(h, w);

		int n = sz(c);

		cout << "{";
		rep(i, n) {
			cout << c[i].num << "," << c[i].dnm << ",}"[i == n - 1];
		}
		cout << "," << endl;
	}

	cout << "};" << endl;
}


// 負の数が見えるのでどうみてもオーバーフローしている
vvl coef = {
// 削除
};


// 埋め込み計算がオーバーフローしている
mint WA(int h0, int w0, ll k, int m) {
	mint::set_mod(m);

	if (h0 < w0) swap(h0, w0);

	int pt = 0;
	repi(h, 1, N) repi(w, 1, min(N / h, h)) {
		if (h == h0 && w == w0) {
			auto c = coef[pt];

			mint res = 0;
			rep(t, sz(c) / 2) {
				res += mint(t).pow(k) * c[2 * t + 0] / c[2 * t + 1];
			}

			return res;
		}
		pt++;
	}

	return -1;
}


vector<vector<F>> umekomi2_sub(int h, int w) {
	int n = h * w;

	vvl bin(n + 1, vl(n + 1));
	bin[0][0] = 1;
	repi(i, 1, n) repi(j, 0, i) {
		if (j > 0) bin[i][j] += bin[i - 1][j - 1];
		if (j < i) bin[i][j] += bin[i - 1][j];
	}

	vector<vector<F>> coef(n + 1, vector<F>(n + 1));

	repb(set, n) {
		if (set == 0) continue;

		vvi a(h, vi(w));
		rep(i, h) rep(j, w) a[i][j] = getb(set, i * w + j);

		dsu d(n); int x0 = 0, y0 = 0;

		rep(i, h) rep(j, w - 1) {
			if (!a[i][j]) continue;
			x0 = i, y0 = j;
			if (!a[i][j + 1]) continue;
			d.merge(i * w + j, i * w + (j + 1));
		}
		rep(i, h - 1) rep(j, w) {
			if (!a[i][j]) continue;
			x0 = i, y0 = j;
			if (!a[i + 1][j]) continue;
			d.merge(i * w + j, (i + 1) * w + j);
		}

		int pc = popcount(set);
		if (d.size(x0 * w + y0) != pc) continue;

		rep(i, h) {
			rep(j, w - 1) {
				if (a[i][j] != 0) continue;
				if (a[i][j + 1] == 1) a[i][j] = -1;
			}
			repi(j, 1, w - 1) {
				if (a[i][j] != 0) continue;
				if (a[i][j - 1] == 1) a[i][j] = -1;
			}
		}
		rep(j, w) {
			rep(i, h - 1) {
				if (a[i][j] != 0) continue;
				if (a[i + 1][j] == 1) a[i][j] = -1;
			}
			repi(i, 1, h - 1) {
				if (a[i][j] != 0) continue;
				if (a[i - 1][j] == 1) a[i][j] = -1;
			}
		}

		int cnt = 0;
		rep(i, h) rep(j, w) cnt += a[i][j] != 0;

		repi(t, 1, n) {
			coef[pc][n - t + 1] += F(1, 1LL << cnt);
			coef[pc][n - t + 1].reduction();
		}
	}

	return coef;
}


int N2 = 25;
void umekomi2() {
	cout << "vvl coef2 = {" << endl;
	repi(h, 1, N2) repi(w, 1, min(N2 / h, h)) {
		if (h * w <= 21) continue;
		dump(h, w);

		auto c = umekomi2_sub(h, w);

		int n = h * w;

		cout << "{";
		repi(i, 0, n) repi(j, 1, n) {
			cout << c[i][j].num << "," << msb(c[i][j].dnm) << ",}"[i == n && j == n];
		}
		cout << "," << endl;
	}

	cout << "};" << endl;
}


vvl coef2 = {
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25}
};


mint solve(int h0, int w0, ll k, int m) {
	if (h0 * w0 <= 21) return TLE(h0, w0, k, m);

	mint::set_mod(m);

	if (h0 < w0) swap(h0, w0);

	int pt = 0;
	repi(h, 1, N) repi(w, 1, min(N / h, h)) {
		if (h * w <= 21) continue;
		if (h == h0 && w == w0) {
			auto c = coef2[pt];

			int n = h * w;

			mint res = 0; pt = 0;
			repi(i, 0, n) repi(j, 1, n) {
				mint val = mint(i).pow(k);
				val *= c[pt++];
				val /= 1LL << c[pt++];
				val /= j;
				res += val;
			}

			return res;
		}
		pt++;
	}

	return -1;
}


int main() {
	input_from_file("input.txt");
	output_to_file("output.txt");

//	umekomi2(); return 0;

	int h, w; ll k; int m;
	cin >> h >> w >> k >> m;

	dump(TLE(h, w, k, m));

	EXIT(solve(h, w, k, m));
}