#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); } template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint998244353; //using mint = static_modint<1000000007>; using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(...) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif //【mint → 有理数】(実験用) /* * x を分母と分子の絶対値が v_max 以下の有理数表示に変換する(不可能ならそのまま) */ string mint_to_frac(mint x, int v_max = 31595) { // verify : https://www.codechef.com/problems/SUMOVERALL repi(dnm, 1, v_max) { int num = (x * dnm).val(); if (num == 0) { return "0"; } if (num <= v_max) { if (dnm == 1) return to_string(num); return to_string(num) + "/" + to_string(dnm); } if (mint::mod() - num <= v_max) { if (dnm == 1) return "-" + to_string(mint::mod() - num); return "-" + to_string(mint::mod() - num) + "/" + to_string(dnm); } } return to_string(x.val()); } // さすがに間に合わない.ていうか思いっきり誤読してた. void WA() { int h, w; ll k; int m; cin >> h >> w >> k >> m; mint::set_mod(m); dump(mint_to_frac(499122177)); dump(mint_to_frac(249561091)); // 11/4 dump(0 + 1 + 1 + 1 + (1 + 1) + 4 + 4 + 9); int n = h * w; vm pow_i(n + 1); repi(i, 0, n) pow_i[i] = mint(i).pow(k); mint res = 0; repb(set, n) { dsu d(n); mint val = 0; rep(i, h) rep(j, w - 1) { if (!getb(set, i * w + j)) continue; if (!getb(set, i * w + (j + 1))) continue; d.merge(i * w + j, i * w + (j + 1)); } rep(i, h - 1) rep(j, w) { if (!getb(set, i * w + j)) continue; if (!getb(set, (i + 1) * w + j)) continue; d.merge(i * w + j, (i + 1) * w + j); } auto gs = d.groups(); repe(g, gs) { if (sz(g) == 1 && !getb(set, g[0])) continue; val += pow_i[sz(g)]; } // dump(set, val); res += val; } res /= mint(2).pow(n); EXIT(res); } //【累乗(mint 利用)】 /* * Pow_mint(mint B, int n) : O(n) * 底を B とし,B^0 から B^n まで計算可能として初期化する. * * build_neg() : O(n) * B^(-1) から B^(-n) も計算可能にする. * 制約 : B は mint の法と互いに素 * * mint [](int i) : O(1) * B^i を返す. */ class Pow_mint { int n; vm powB, powB_inv; public: Pow_mint(mint B, int n) : n(max(n, 2)) { // verify : https://yukicoder.me/problems/no/2709 // B の累乗を計算する. powB.resize(n + 1); powB[0] = 1; rep(i, n) powB[i + 1] = powB[i] * B; }; Pow_mint() : n(0) {} // 負冪も計算できるようにする. void build_neg() { // verify : https://atcoder.jp/contests/arc116/tasks/arc116_b // B の逆元の累乗を計算する. mint invB = powB[1].inv(); powB_inv.resize(n + 1); powB_inv[0] = 1; rep(i, n) powB_inv[i + 1] = powB_inv[i] * invB; } // B^i を返す. mint const& operator[](int i) const { // verify : https://atcoder.jp/contests/arc116/tasks/arc116_b Assert(abs(i) <= n); return i >= 0 ? powB[i] : powB_inv[-i]; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Pow_mint& pw) { os << pw.powB << endl; os << pw.powB_inv << endl; return os; } #endif }; // AC51, TLE16.後は高速化だけだ mint TLE(int h, int w, ll k, int m) { mint::set_mod(m); int n = h * w; vm pow_i(n + 1); repi(i, 0, n) pow_i[i] = mint(i).pow(k); vvm bin(n + 1, vm(n + 1)); bin[0][0] = 1; repi(i, 1, n) repi(j, 0, i) { if (j > 0) bin[i][j] += bin[i - 1][j - 1]; if (j < i) bin[i][j] += bin[i - 1][j]; } vvm bin_inv(n + 1, vm(n + 1)); repi(i, 0, n) repi(j, 0, i) { bin_inv[i][j] = bin[i][j].inv(); } Pow_mint pow2(2, n); pow2.build_neg(); vm inv(n + 1); repi(i, 1, n) inv[i] = mint(i).inv(); mint res = 0; // ひとまず bit 全探索.もしや連結 DP 的なことしないとだめ? repb(set, n) { if (set == 0) continue; vvi a(h, vi(w)); rep(i, h) rep(j, w) a[i][j] = getb(set, i * w + j); dsu d(n); int x0 = 0, y0 = 0; rep(i, h) rep(j, w - 1) { if (!a[i][j]) continue; x0 = i, y0 = j; if (!a[i][j + 1]) continue; d.merge(i * w + j, i * w + (j + 1)); } rep(i, h - 1) rep(j, w) { if (!a[i][j]) continue; x0 = i, y0 = j; if (!a[i + 1][j]) continue; d.merge(i * w + j, (i + 1) * w + j); } int pc = popcount(set); if (d.size(x0 * w + y0) != pc) continue; rep(i, h) { rep(j, w - 1) { if (a[i][j] != 0) continue; if (a[i][j + 1] == 1) a[i][j] = -1; } repi(j, 1, w - 1) { if (a[i][j] != 0) continue; if (a[i][j - 1] == 1) a[i][j] = -1; } } rep(j, w) { rep(i, h - 1) { if (a[i][j] != 0) continue; if (a[i + 1][j] == 1) a[i][j] = -1; } repi(i, 1, h - 1) { if (a[i][j] != 0) continue; if (a[i - 1][j] == 1) a[i][j] = -1; } } int cnt = 0; rep(i, h) rep(j, w) cnt += a[i][j] != 0; repi(k, 1, n) { mint p0 = bin_inv[n][k] * pow2[-k]; mint w1 = pow2[k - cnt] * bin[n][k] * inv[n - k + 1]; res += p0 * w1 * pow_i[pc]; } } return res; } //【有理数】 /* * Frac<T>() : O(1) * 0 で初期化する. * 制約:T は int, ll, __int128, boost::multiprecision::int256_t 等 * * Frac<T>(T num) : O(1) * num で初期化する. * * Frac<T>(T num, T dnm) : O(1) * num / dnm で初期化する(分母は自動的に正にする) * * a == b, a != b, a < b, a > b, a <= b, a >= b : O(1) * 大小比較を行う(分母が共通の場合は積はとらない) * * a + b, a - b, a * b, a / b : O(1) * 加減乗除を行う(和と差については,分母が共通の場合は積はとらない) * 一方が整数でも構わない.複合代入演算子も使用可. * * reduction() : O(log min(num, dnm)) * 自身の約分を行う. * * together(Frac& a, Frac& b) : O(log min(a.dnm, b.dnm)) * a と b を通分する. * * together(vector<Frac>& as) : O(|as| log dnm) * as を通分する. * * T floor() : O(1) * 自身の floor を返す. * * T ceil() : O(1) * 自身の ceil を返す. * * bool integerQ() : O(1) * 自身が整数かを返す. */ template <class T = ll> struct Frac { // 分子,分母 T num, dnm; // コンストラクタ Frac() : num(0), dnm(1) {} Frac(T num) : num(num), dnm(1) {} Frac(T num_, T dnm_) : num(num_), dnm(dnm_) { // verify : https://atcoder.jp/contests/abc244/tasks/abc244_h Assert(dnm != 0); if (dnm < 0) { num *= -1; dnm *= -1; } } // 代入 Frac(const Frac& b) = default; Frac& operator=(const Frac& b) = default; // キャスト operator double() const { return (double)num / (double)dnm; } // 比較 bool operator==(const Frac& b) const { // 分母が等しいときはオーバーフロー防止のために掛け算はせず比較する. if (dnm == b.dnm) return num == b.num; return num * b.dnm == b.num * dnm; } bool operator!=(const Frac& b) const { return !(*this == b); } bool operator<(const Frac& b) const { // verify : https://atcoder.jp/contests/abc308/tasks/abc308_c // 分母が等しいときはオーバーフロー防止のために掛け算はせず比較する. if (dnm == b.dnm) return num < b.num; return (num * b.dnm < b.num * dnm); } bool operator>=(const Frac& b) const { return !(*this < b); } bool operator>(const Frac& b) const { return b < *this; } bool operator<=(const Frac& b) const { return !(*this > b); } // 整数との比較 bool operator==(T b) const { return num == b * dnm; } bool operator!=(T b) const { return num != b * dnm; } bool operator<(T b) const { return num < b * dnm; } bool operator>=(T b) const { return num >= b * dnm; } bool operator>(T b) const { return num > b * dnm; } bool operator<=(T b) const { return num <= b * dnm; } friend bool operator==(T a, const Frac& b) { return a * b.dnm == b.num; } friend bool operator!=(T a, const Frac& b) { return a * b.dnm != b.num; } friend bool operator<(T a, const Frac& b) { return a * b.dnm < b.num; } friend bool operator>=(T a, const Frac& b) { return a * b.dnm >= b.num; } friend bool operator>(T a, const Frac& b) { return a * b.dnm > b.num; } friend bool operator<=(T a, const Frac& b) { return a * b.dnm <= b.num; } // 四則演算 Frac& operator+=(const Frac& b) { // verify : https://www.codechef.com/problems/ARCTR // 分母が等しいときはオーバーフロー防止のために掛け算はせず加算する. if (dnm == b.dnm) num += b.num; else { num = num * b.dnm + b.num * dnm; dnm *= b.dnm; } return *this; } Frac& operator-=(const Frac& b) { // verify : https://www.codechef.com/problems/ARCTR // 分母が等しいときはオーバーフロー防止のために掛け算はせず加算する. if (dnm == b.dnm) num -= b.num; else { num = num * b.dnm - b.num * dnm; dnm *= b.dnm; } return *this; } Frac& operator*=(const Frac& b) { num *= b.num; dnm *= b.dnm; return *this; } Frac& operator/=(const Frac& b) { // verify : https://atcoder.jp/contests/abc301/tasks/abc301_g Assert(b.num != 0); num *= b.dnm; dnm *= b.num; if (dnm < 0) { num *= -1; dnm *= -1; } return *this; } Frac operator+(const Frac& b) const { Frac a = *this; return a += b; } Frac operator-(const Frac& b) const { Frac a = *this; return a -= b; } Frac operator*(const Frac& b) const { Frac a = *this; return a *= b; } Frac operator/(const Frac& b) const { Frac a = *this; return a /= b; } Frac operator-() const { return Frac(*this) *= Frac(-1); } // 整数との四則演算 Frac& operator+=(T c) { num += dnm * c; return *this; } Frac& operator-=(T c) { num -= dnm * c; return *this; } Frac& operator*=(T c) { num *= c; return *this; } Frac& operator/=(T c) { Assert(c != T(0)); dnm *= c; if (dnm < 0) { num *= -1; dnm *= -1; } return *this; } Frac operator+(T c) const { Frac a = *this; return a += c; } Frac operator-(T c) const { Frac a = *this; return a -= c; } Frac operator*(T c) const { Frac a = *this; return a *= c; } Frac operator/(T c) const { Frac a = *this; return a /= c; } friend Frac operator+(T c, const Frac& a) { return a + c; } friend Frac operator-(T c, const Frac& a) { return Frac(c) - a; } friend Frac operator*(T c, const Frac& a) { return a * c; } friend Frac operator/(T c, const Frac& a) { return Frac(c) / a; } // 約分を行う. void reduction() { // verify : https://atcoder.jp/contests/abc229/tasks/abc229_h auto g = gcd(num, dnm); num /= g; dnm /= g; } // a と b を通分する. friend void together(Frac& a, Frac& b) { // verify : https://atcoder.jp/contests/abc229/tasks/abc229_h T dnm = lcm(a.dnm, b.dnm); a.num *= dnm / a.dnm; a.dnm = dnm; b.num *= dnm / b.dnm; b.dnm = dnm; } // as を通分する. friend void together(vector<Frac>& as) { // verify : https://yukicoder.me/problems/617 T dnm = 1; repe(a, as) dnm = lcm(dnm, a.dnm); repea(a, as) { a.num *= dnm / a.dnm; a.dnm = dnm; } } // 自身の floor を返す. T floor() const { // verify : https://www.codechef.com/problems/LINEFIT?tab=statement if (num >= 0) return num / dnm; else return -((-num + dnm - 1) / dnm); } // 自身の ceil を返す. T ceil() const { // verify : https://www.codechef.com/problems/LINEFIT?tab=statement if (num >= 0) return (num + dnm - 1) / dnm; else return -((-num) / dnm); } // 自身が整数かを返す. bool integerQ() const { // verify : https://atcoder.jp/contests/ttpc2022/tasks/ttpc2022_g return num % dnm == 0; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Frac& a) { os << a.num << '/' << a.dnm; return os; } #endif }; using F = Frac<ll>; vector<F> umekomi_sub(int h, int w) { int n = h * w; vvl bin(n + 1, vl(n + 1)); bin[0][0] = 1; repi(i, 1, n) repi(j, 0, i) { if (j > 0) bin[i][j] += bin[i - 1][j - 1]; if (j < i) bin[i][j] += bin[i - 1][j]; } vector<F> coef(n + 1); repb(set, n) { if (set == 0) continue; vvi a(h, vi(w)); rep(i, h) rep(j, w) a[i][j] = getb(set, i * w + j); dsu d(n); int x0 = 0, y0 = 0; rep(i, h) rep(j, w - 1) { if (!a[i][j]) continue; x0 = i, y0 = j; if (!a[i][j + 1]) continue; d.merge(i * w + j, i * w + (j + 1)); } rep(i, h - 1) rep(j, w) { if (!a[i][j]) continue; x0 = i, y0 = j; if (!a[i + 1][j]) continue; d.merge(i * w + j, (i + 1) * w + j); } int pc = popcount(set); if (d.size(x0 * w + y0) != pc) continue; rep(i, h) { rep(j, w - 1) { if (a[i][j] != 0) continue; if (a[i][j + 1] == 1) a[i][j] = -1; } repi(j, 1, w - 1) { if (a[i][j] != 0) continue; if (a[i][j - 1] == 1) a[i][j] = -1; } } rep(j, w) { rep(i, h - 1) { if (a[i][j] != 0) continue; if (a[i + 1][j] == 1) a[i][j] = -1; } repi(i, 1, h - 1) { if (a[i][j] != 0) continue; if (a[i - 1][j] == 1) a[i][j] = -1; } } int cnt = 0; rep(i, h) rep(j, w) cnt += a[i][j] != 0; repi(t, 1, n) { coef[pc] += F(1, (ll)(n - t + 1) << cnt); coef[pc].reduction(); } } return coef; } int N = 25; void umekomi() { cout << "vvl coef = {" << endl; repi(h, 1, N) repi(w, 1, min(N / h, h)) { dump(h, w); auto c = umekomi_sub(h, w); int n = sz(c); cout << "{"; rep(i, n) { cout << c[i].num << "," << c[i].dnm << ",}"[i == n - 1]; } cout << "," << endl; } cout << "};" << endl; } // 負の数が見えるのでどうみてもオーバーフローしている vvl coef = { // 削除 }; // 埋め込み計算がオーバーフローしている mint WA(int h0, int w0, ll k, int m) { mint::set_mod(m); if (h0 < w0) swap(h0, w0); int pt = 0; repi(h, 1, N) repi(w, 1, min(N / h, h)) { if (h == h0 && w == w0) { auto c = coef[pt]; mint res = 0; rep(t, sz(c) / 2) { res += mint(t).pow(k) * c[2 * t + 0] / c[2 * t + 1]; } return res; } pt++; } return -1; } vector<vector<F>> umekomi2_sub(int h, int w) { int n = h * w; vvl bin(n + 1, vl(n + 1)); bin[0][0] = 1; repi(i, 1, n) repi(j, 0, i) { if (j > 0) bin[i][j] += bin[i - 1][j - 1]; if (j < i) bin[i][j] += bin[i - 1][j]; } vector<vector<F>> coef(n + 1, vector<F>(n + 1)); repb(set, n) { if (set == 0) continue; vvi a(h, vi(w)); rep(i, h) rep(j, w) a[i][j] = getb(set, i * w + j); dsu d(n); int x0 = 0, y0 = 0; rep(i, h) rep(j, w - 1) { if (!a[i][j]) continue; x0 = i, y0 = j; if (!a[i][j + 1]) continue; d.merge(i * w + j, i * w + (j + 1)); } rep(i, h - 1) rep(j, w) { if (!a[i][j]) continue; x0 = i, y0 = j; if (!a[i + 1][j]) continue; d.merge(i * w + j, (i + 1) * w + j); } int pc = popcount(set); if (d.size(x0 * w + y0) != pc) continue; rep(i, h) { rep(j, w - 1) { if (a[i][j] != 0) continue; if (a[i][j + 1] == 1) a[i][j] = -1; } repi(j, 1, w - 1) { if (a[i][j] != 0) continue; if (a[i][j - 1] == 1) a[i][j] = -1; } } rep(j, w) { rep(i, h - 1) { if (a[i][j] != 0) continue; if (a[i + 1][j] == 1) a[i][j] = -1; } repi(i, 1, h - 1) { if (a[i][j] != 0) continue; if (a[i - 1][j] == 1) a[i][j] = -1; } } int cnt = 0; rep(i, h) rep(j, w) cnt += a[i][j] != 0; repi(t, 1, n) { coef[pc][n - t + 1] += F(1, 1LL << cnt); coef[pc][n - t + 1].reduction(); } } return coef; } int N2 = 25; void umekomi2() { cout << "vvl coef2 = {" << endl; repi(h, 1, N2) repi(w, 1, min(N2 / h, h)) { if (h * w <= 21) continue; dump(h, w); auto c = umekomi2_sub(h, w); int n = h * w; cout << "{"; repi(i, 0, n) repi(j, 1, n) { cout << c[i][j].num << "," << msb(c[i][j].dnm) << ",}"[i == n && j == n]; } cout << "," << endl; } cout << "};" << endl; } vvl coef2 = { {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25} }; mint solve(int h0, int w0, ll k, int m) { if (h0 * w0 <= 21) return TLE(h0, w0, k, m); mint::set_mod(m); if (h0 < w0) swap(h0, w0); int pt = 0; repi(h, 1, N) repi(w, 1, min(N / h, h)) { if (h * w <= 21) continue; if (h == h0 && w == w0) { auto c = coef2[pt]; int n = h * w; mint res = 0; pt = 0; repi(i, 0, n) repi(j, 1, n) { mint val = mint(i).pow(k); val *= c[pt++]; val /= 1LL << c[pt++]; val /= j; res += val; } return res; } pt++; } return -1; } int main() { input_from_file("input.txt"); output_to_file("output.txt"); // umekomi2(); return 0; int h, w; ll k; int m; cin >> h >> w >> k >> m; dump(TLE(h, w, k, m)); EXIT(solve(h, w, k, m)); }