/** * date : 2024-12-10 15:09:59 * author : Nyaan */ #define NDEBUG using namespace std; // intrinstic #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template using V = vector; template using VV = vector>; using vi = vector; using vl = vector; using vd = V; using vs = V; using vvi = vector>; using vvl = vector>; template using minpq = priority_queue, greater>; template struct P : pair { template constexpr P(Args... args) : pair(args...) {} using pair::first; using pair::second; P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } template P &operator*=(const S &r) { first *= r, second *= r; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } template P operator*(const S &r) const { return P(*this) *= r; } P operator-() const { return P{-first, -second}; } }; using pl = P; using pi = P; using vp = V; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template int sz(const T &t) { return t.size(); } template inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template inline T Max(const vector &v) { return *max_element(begin(v), end(v)); } template inline T Min(const vector &v) { return *min_element(begin(v), end(v)); } template inline long long Sum(const vector &v) { return accumulate(begin(v), end(v), 0LL); } template int lb(const vector &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template int ub(const vector &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template pair mkp(const T &t, const U &u) { return make_pair(t, u); } template vector mkrui(const vector &v, bool rev = false) { vector ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template vector mkuni(const vector &v) { vector ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template vector mkord(int N, F f) { vector ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template vector mkinv(vector &v) { int max_val = *max_element(begin(v), end(v)); vector inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } vector mkiota(int n) { vector ret(n); iota(begin(ret), end(ret), 0); return ret; } template T mkrev(const T &v) { T w{v}; reverse(begin(w), end(w)); return w; } template bool nxp(T &v) { return next_permutation(begin(v), end(v)); } // 返り値の型は入力の T に依存 // i 要素目 : [0, a[i]) template vector> product(const vector &a) { vector> ret; vector v; auto dfs = [&](auto rc, int i) -> void { if (i == (int)a.size()) { ret.push_back(v); return; } for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back(); }; dfs(dfs, 0); return ret; } // F : function(void(T&)), mod を取る操作 // T : 整数型のときはオーバーフローに注意する template T Power(T a, long long n, const T &I, const function &f) { T res = I; for (; n; f(a = a * a), n >>= 1) { if (n & 1) f(res = res * a); } return res; } // T : 整数型のときはオーバーフローに注意する template T Power(T a, long long n, const T &I = T{1}) { return Power(a, n, I, function{[](T &) -> void {}}); } template T Rev(const T &v) { T res = v; reverse(begin(res), end(res)); return res; } template vector Transpose(const vector &v) { using U = typename T::value_type; if(v.empty()) return {}; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { res[j][i] = v[i][j]; } } return res; } template vector Rotate(const vector &v, int clockwise = true) { using U = typename T::value_type; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { if (clockwise) { res[W - 1 - j][i] = v[i][j]; } else { res[j][H - 1 - i] = v[i][j]; } } } return res; } } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return __builtin_popcountll(a); } inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; } template inline int gbit(const T &a, int i) { return (a >> i) & 1; } template inline void sbit(T &a, int i, bool b) { if (gbit(a, i) != b) a ^= T(1) << i; } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template ostream &operator<<(ostream &os, const pair &p) { os << p.first << " " << p.second; return os; } template istream &operator>>(istream &is, pair &p) { is >> p.first >> p.second; return is; } template ostream &operator<<(ostream &os, const vector &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template istream &operator>>(istream &is, vector &v) { for (auto &x : v) is >> x; return is; } istream &operator>>(istream &is, __int128_t &x) { string S; is >> S; x = 0; int flag = 0; for (auto &c : S) { if (c == '-') { flag = true; continue; } x *= 10; x += c - '0'; } if (flag) x = -x; return is; } istream &operator>>(istream &is, __uint128_t &x) { string S; is >> S; x = 0; for (auto &c : S) { x *= 10; x += c - '0'; } return is; } ostream &operator<<(ostream &os, __int128_t x) { if (x == 0) return os << 0; if (x < 0) os << '-', x = -x; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } ostream &operator<<(ostream &os, __uint128_t x) { if (x == 0) return os << 0; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } void in() {} template void in(T &t, U &...u) { cin >> t; in(u...); } void out() { cout << "\n"; } template void out(const T &t, const U &...u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug #ifdef NyaanDebug #define trc(...) (void(0)) #endif #ifndef NyaanDebug #define trc(...) (void(0)) #endif #ifndef NyaanLocal #define trc2(...) (void(0)) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define fi first #define se second #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // template struct edge { int src, to; T cost; edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {} edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {} edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; template using Edges = vector>; template using WeightedGraph = vector>; using UnweightedGraph = vector>; // Input of (Unweighted) Graph UnweightedGraph graph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { UnweightedGraph g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; if (is_1origin) x--, y--; g[x].push_back(y); if (!is_directed) g[y].push_back(x); } return g; } // Input of Weighted Graph template WeightedGraph wgraph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { WeightedGraph g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; cin >> c; if (is_1origin) x--, y--; g[x].emplace_back(x, y, c); if (!is_directed) g[y].emplace_back(y, x, c); } return g; } // Input of Edges template Edges esgraph([[maybe_unused]] int N, int M, int is_weighted = true, bool is_1origin = true) { Edges es; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; es.emplace_back(x, y, c); } return es; } // Input of Adjacency Matrix template vector> adjgraph(int N, int M, T INF, int is_weighted = true, bool is_directed = false, bool is_1origin = true) { vector> d(N, vector(N, INF)); for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; d[x][y] = c; if (!is_directed) d[y][x] = c; } return d; } /** * @brief グラフテンプレート * @docs docs/graph/graph-template.md */ // template struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); static_assert(r * mod == 1, "this code has bugs."); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint operator+() const { return mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0; while (y > 0) { t = x / y; x -= t * y, u -= t * v; tmp = x, x = y, y = tmp; tmp = u, u = v, v = tmp; } return mint{u}; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; using namespace std; // コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」 // を入れると倍速くらいになる // mod を超えて前計算して 0 割りを踏むバグは対策済み template struct Binomial { vector f, g, h; Binomial(int MAX = 0) { assert(T::get_mod() != 0 && "Binomial()"); f.resize(1, T{1}); g.resize(1, T{1}); h.resize(1, T{1}); if (MAX > 0) extend(MAX + 1); } void extend(int m = -1) { int n = f.size(); if (m == -1) m = n * 2; m = min(m, T::get_mod()); if (n >= m) return; f.resize(m); g.resize(m); h.resize(m); for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i); g[m - 1] = f[m - 1].inverse(); h[m - 1] = g[m - 1] * f[m - 2]; for (int i = m - 2; i >= n; i--) { g[i] = g[i + 1] * T(i + 1); h[i] = g[i] * f[i - 1]; } } T fac(int i) { if (i < 0) return T(0); while (i >= (int)f.size()) extend(); return f[i]; } T finv(int i) { if (i < 0) return T(0); while (i >= (int)g.size()) extend(); return g[i]; } T inv(int i) { if (i < 0) return -inv(-i); while (i >= (int)h.size()) extend(); return h[i]; } T C(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r) * finv(r); } inline T operator()(int n, int r) { return C(n, r); } template T multinomial(const vector& r) { static_assert(is_integral::value == true); int n = 0; for (auto& x : r) { if (x < 0) return T(0); n += x; } T res = fac(n); for (auto& x : r) res *= finv(x); return res; } template T operator()(const vector& r) { return multinomial(r); } T C_naive(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); T ret = T(1); r = min(r, n - r); for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--); return ret; } T P(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r); } // [x^r] 1 / (1-x)^n T H(long long n, long long r) { if (n < 0 || r < 0) return T(0); return r == 0 ? 1 : C(n + r - 1, r); } }; // namespace nachia { template class CsrArray { public: struct ListRange { using iterator = typename std::vector::iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } Elem& operator[](int i) const { return begi[i]; } }; struct ConstListRange { using iterator = typename std::vector::const_iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } const Elem& operator[](int i) const { return begi[i]; } }; private: int m_n; std::vector m_list; std::vector m_pos; public: CsrArray() : m_n(0), m_list(), m_pos() {} static CsrArray Construct(int n, std::vector> items) { CsrArray res; res.m_n = n; std::vector buf(n + 1, 0); for (auto& [u, v] : items) { ++buf[u]; } for (int i = 1; i <= n; i++) buf[i] += buf[i - 1]; res.m_list.resize(buf[n]); for (int i = (int)items.size() - 1; i >= 0; i--) { res.m_list[--buf[items[i].first]] = std::move(items[i].second); } res.m_pos = std::move(buf); return res; } static CsrArray FromRaw(std::vector list, std::vector pos) { CsrArray res; res.m_n = pos.size() - 1; res.m_list = std::move(list); res.m_pos = std::move(pos); return res; } ListRange operator[](int u) { return ListRange{m_list.begin() + m_pos[u], m_list.begin() + m_pos[u + 1]}; } ConstListRange operator[](int u) const { return ConstListRange{m_list.begin() + m_pos[u], m_list.begin() + m_pos[u + 1]}; } int size() const { return m_n; } int fullSize() const { return (int)m_list.size(); } }; } // namespace nachia namespace nachia { struct Graph { public: struct Edge { int from, to; void reverse() { std::swap(from, to); } int xorval() const { return from ^ to; } }; Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {} Graph(int n, const std::vector>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected) { m_e.resize(edges.size()); for (std::size_t i = 0; i < edges.size(); i++) m_e[i] = {edges[i].first, edges[i].second}; } template static Graph Input(Cin& cin, int n, bool undirected, int m, bool offset = 0) { Graph res(n, undirected, m); for (int i = 0; i < m; i++) { int u, v; cin >> u >> v; res[i].from = u - offset; res[i].to = v - offset; } return res; } int numVertices() const noexcept { return m_n; } int numEdges() const noexcept { return int(m_e.size()); } int addNode() noexcept { return m_n++; } int addEdge(int from, int to) { m_e.push_back({from, to}); return numEdges() - 1; } Edge& operator[](int ei) noexcept { return m_e[ei]; } const Edge& operator[](int ei) const noexcept { return m_e[ei]; } Edge& at(int ei) { return m_e.at(ei); } const Edge& at(int ei) const { return m_e.at(ei); } auto begin() { return m_e.begin(); } auto end() { return m_e.end(); } auto begin() const { return m_e.begin(); } auto end() const { return m_e.end(); } bool isUndirected() const noexcept { return m_isUndir; } void reverseEdges() noexcept { for (auto& e : m_e) e.reverse(); } void contract(int newV, const std::vector& mapping) { assert(numVertices() == int(mapping.size())); for (int i = 0; i < numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV); for (auto& e : m_e) { e.from = mapping[e.from]; e.to = mapping[e.to]; } m_n = newV; } std::vector induce(int num, const std::vector& mapping) const { int n = numVertices(); assert(n == int(mapping.size())); for (int i = 0; i < n; i++) assert(-1 <= mapping[i] && mapping[i] < num); std::vector indexV(n), newV(num); for (int i = 0; i < n; i++) if (mapping[i] >= 0) indexV[i] = newV[mapping[i]]++; std::vector res; res.reserve(num); for (int i = 0; i < num; i++) res.emplace_back(newV[i], isUndirected()); for (auto e : m_e) if (mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]); return res; } CsrArray getEdgeIndexArray(bool undirected) const { std::vector> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for (int i = 0; i < numEdges(); i++) { auto e = operator[](i); src.emplace_back(e.from, i); if (undirected) src.emplace_back(e.to, i); } return CsrArray::Construct(numVertices(), src); } CsrArray getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); } CsrArray getAdjacencyArray(bool undirected) const { std::vector> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for (auto e : m_e) { src.emplace_back(e.from, e.to); if (undirected) src.emplace_back(e.to, e.from); } return CsrArray::Construct(numVertices(), src); } CsrArray getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); } private: int m_n; std::vector m_e; bool m_isUndir; }; } // namespace nachia namespace nachia { // simple graph // for each edge // O( n + m sqrt(m) ) time template std::vector CountC4Simple(int n, std::vector U, std::vector V, std::vector W) { int m = int(W.size()); // less incident edges, smaller index std::vector deg(n); for (int e = 0; e < m; e++) { deg[U[e]]++; deg[V[e]]++; } std::vector I(n); for (int i = 0; i < n; i++) I[i] = i; std::sort(I.begin(), I.end(), [&](int l, int r) { return deg[l] < deg[r]; }); { std::vector O(n); for (int i = 0; i < n; i++) O[I[i]] = i; for (int& u : U) u = O[u]; for (int& u : V) u = O[u]; } for (int e = 0; e < m; e++) if (U[e] < V[e]) std::swap(U[e], V[e]); // adjacency list std::vector estart(n); for (int i = 0; i < n - 1; i++) estart[i + 1] = estart[i] + deg[I[i]]; std::vector eend = estart; std::vector eid(m * 2); std::vector eto(m * 2); for (int e = 0; e < m; e++) { int v = U[e]; int w = V[e]; eid[eend[v]] = e; eto[eend[v]] = w; eend[v]++; } std::vector eendx = eend; for (int v = 0; v < n; v++) { for (int i = estart[v]; i < eendx[v]; i++) { int e = eid[i]; int w = eto[i]; eid[eend[w]] = e; eto[eend[w]] = v; eend[w]++; } } std::vector c(n); // c[x] : number of paths(v --> w --> x) std::vector ans(m); for (int v = n - 1; v >= 0; v--) { for (int i = estart[v]; i < eend[v]; i++) { int evw = eid[i]; int w = eto[i]; eend[w] -= 1; // remove w -> v for (int j = estart[w]; j < eend[w]; j++) { int ewx = eid[j]; int x = eto[j]; c[x] += W[evw] * W[ewx]; } } for (int i = estart[v]; i < eend[v]; i++) { int evw = eid[i]; int w = eto[i]; for (int j = estart[w]; j < eend[w]; j++) { int ewx = eid[j]; int x = eto[j]; Weight val = c[x] - W[evw] * W[ewx]; ans[evw] += val * W[ewx]; ans[ewx] += val * W[evw]; } } for (int i = estart[v]; i < eend[v]; i++) { int w = eto[i]; for (int j = estart[w]; j < eend[w]; j++) c[eto[j]] = 0; } } return ans; } // for each edge // O( n + m sqrt(m) ) time template std::vector CountC4(int n, std::vector U, std::vector V, std::vector W) { int m = int(W.size()); for (int i = 0; i < m; i++) if (U[i] > V[i]) std::swap(U[i], V[i]); std::vector I(m); for (int i = 0; i < m; i++) I[i] = i; std::sort(I.begin(), I.end(), [&](int l, int r) { return V[l] < V[r]; }); std::stable_sort(I.begin(), I.end(), [&](int l, int r) { return U[l] < U[r]; }); std::vector Q(m); std::vector U2; std::vector V2; std::vector W2; for (int i = 0; i < m; i++) { int e = I[i]; if (i == 0 || U2.back() != U[e] || V2.back() != V[e]) { U2.push_back(U[e]); V2.push_back(V[e]); W2.push_back(0); } W2.back() += W[e]; Q[e] = int(U2.size()) - 1; } auto simple_res = CountC4Simple(n, std::move(U2), std::move(V2), std::move(W2)); std::vector ans(m); for (int e = 0; e < m; e++) ans[e] = simple_res[Q[e]]; return ans; } } // namespace nachia // using namespace Nyaan; using mint = LazyMontgomeryModInt<998244353>; // using mint = LazyMontgomeryModInt<1000000007>; using vm = vector; using vvm = vector; using namespace Nyaan; template void enumerate_triangle(const vvi& g, const F& f) { int N = sz(g); auto ord = mkord(N, [&](int i, int j) { return g[i].size() < g[j].size(); }); auto inv = mkinv(ord); vvi h(N); vp es; rep(i, N) each(j, g[i]) if (inv[i] < inv[j]) { es.emplace_back(i, j), h[i].push_back(j); } V flg(N, 0); each(e, es) { each(u, h[e.first]) flg[u] = 1; each(v, h[e.second]) if (flg[v]) f(v, e.first, e.second); each(u, h[e.first]) flg[u] = 0; } } void q() { ini(N, M); vvi g = graph(N, M); vp es; rep(i, N) each(j, g[i]) if (i < j) es.emplace_back(i, j); vi deg(N); rep(i, N) deg[i] = sz(g[i]); ll C3_num = 0; enumerate_triangle(g, [&](int, int, int) { C3_num++; }); ll C4_num = 0; { vi u, v; each2(i, j, es) u.push_back(i), v.push_back(j); auto c4 = nachia::CountC4(N, u, v, vl(M, 1)); C4_num = Sum(c4) / 4; } Binomial C; auto f1 = [&]() -> mint { return C(N, 4); }; auto f2 = [&]() -> mint { return C(N - 2, 2) * M; }; auto f3 = [&]() -> mint { mint s = 0; rep(i, N) s += C(deg[i], 2); return s * (N - 3); }; auto f4 = [&]() -> mint { mint s = 0; rep(i, N) s += C(deg[i], 2); return C(M, 2) - s; }; auto f5 = [&]() -> mint { mint s = 0; rep(i, N) s += C(deg[i], 3); return s; }; auto f6 = [&]() -> mint { mint s = 0; each2(u, v, es) s += (deg[u] - 1) * (deg[v] - 1); s -= 3 * C3_num; return s; }; auto f7 = [&]() -> mint { return mint{C3_num} * (N - 3); }; auto f8 = [&]() -> mint { return C4_num; }; auto f9 = [&]() -> mint { vi cnt(N); enumerate_triangle( g, [&](int i, int j, int k) { cnt[i]++, cnt[j]++, cnt[k]++; }); mint s = 0; rep(u, N) s += 1LL * (deg[u] - 2) * cnt[u]; return s; }; auto f10 = [&]() -> mint { vl v; enumerate_triangle(g, [&](ll i, ll j, ll k) { v.push_back((min(i, j) << 32) + max(i, j)); v.push_back((min(j, k) << 32) + max(j, k)); v.push_back((min(k, i) << 32) + max(k, i)); }); sort(begin(v), end(v)); mint s = 0; for (int i = 0, j = 0; i < sz(v); i = j) { while (j != sz(v) and v[i] == v[j]) j++; s += C(j - i, 2); } return s; }; trc(f1(), f2(), f3(), f4(), f5(), f6(), f7(), f8(), f9(), f10()); mint T = mint{-1} / 3; mint ans = 0; ans += f1(); ans -= f2(); ans += f3(); ans += f4(); ans -= f5(); ans -= f6(); ans -= f7(); ans += f8() * 2 / 3; ans += f9(); ans -= f10() * 2 / 3; out(T, ans); // trc(mint{13} + T * 2); } void Nyaan::solve() { int t = 1; // in(t); while (t--) q(); }