// the struct of finite fields with p elements
// p must be a prime number
struct FiniteField(long p)
    if (p > 1)
{
    ulong n;
    
    this(long n) {
        if (n < 0) this.n = n%p + p;
        else this.n = n%p;
    }
    
    FiniteField!p opUnary(string op: "+")() {
        return this;
    }
    
    FiniteField!p opUnary(string op: "-")() {
        return FiniteField!p(-n);
    }
    
    FiniteField!p opBinary(string op)(long rhs) {
        static if (op == "^^") {
            if (rhs < 0) { return this.inv() ^^ rhs; }
            
            auto result = FiniteField!p(1);
            auto i = 0, pow_2_i = this; // pow_2_i = n^{2^i}
            rhs %= (p-1);
            while (rhs > 0) {
                 if (rhs % 2 == 1) {
                     result = result * pow_2_i;
                 }
                 rhs >>= 1;
                 i++;
                 pow_2_i = pow_2_i * pow_2_i;
            }
            return result;
        }
        else {
            return this.opBinary!op(FiniteField!p(rhs));
        }
    }
    
    FiniteField!p opBinary(string op)(FiniteField!p rhs) {
        auto result = this;
        
        static if (op == "+") {
            result.n = (result.n + rhs.n) % p;
        }
        else if (op == "-") {
            result.n = (result.n - rhs.n + p) % p;
        }
        else if (op == "*") {
        	result.n = (result.n * rhs.n) % p;
        }
        else if (op == "/") {
            assert (rhs.n != 0);
        	result.n = (result.n + rhs.inv().n) % p;
        }
        else assert(0);
        
        return result;
    }
    
    FiniteField!p opOpAssign(string op)(long rhs) {
        return this.opBinary!op(rhs);
    }
    FiniteField!p opOpAssign(string op)(FiniteField!p rhs) {
        return this = this.opBinary!op(rhs);
    }
    
    FiniteField!p inv() {
        assert (this.n != 0);
        return this ^^ (p-2);
    }
    
    string toString() {
        import std.conv: to;
        return n.to!string;
    }
}

immutable p = 1009;
alias F = FiniteField!p;

// main part
ulong[] calculate(ulong[] K, ulong[] A_) {
    import std.algorithm, std.array;
    
    auto M = K.length - 1;
    auto N = A_.length - 1;
    
    auto A_0 = new F[A_.length]; A_0[0] = F(1);		// A_0 = 1
    auto A_1 = A_.map!(x => F(x)).array;			// A_1 = A_{1,0} + A_{1, 1}x + A_{1, 2}x^2 + ...
    
    F[][] A_list = [A_1];    // A_list[k] = A_1^{2^k}
    {
        auto i = 0, pow_2_i = 1;
        while (pow_2_i < p) {
            A_list ~= product(A_list[$-1], A_list[$-1]);
            i++; pow_2_i *= 2;
        }
    }
    // calculate A_1^k
    F[] pow_A_1(ulong k) {
        assert(k < p);
    	auto result = A_0.dup;
        int i = 0;
        while (k > 0) {
            if (k % 2 == 1) result = product(result, A_list[i]);
            i++; k >>= 1;
        }
        return result;
    }
    
    ulong j = 0, q = 1; // q = p^j
    auto result = new F[A_.length]; result[0] = F(1);
    while (j < K.length && q <= N) {
        result = product(result, pow_A_1(K[j]).frobenius(q)); // result *= {A_1^{K_j}}^q
        j++; q *= p;
    }
    
    auto pow = A_1[0] ^^ (cast(long) reduce!"a+b"(0UL, K[j .. $])); // A_{1, 0} ^ {c_j + ... + c_M}
    return result.map!(x => (x*pow).n).array;
}

// f, g -> fg; calculate the product
F[] product(F[] f, F[] g) {
    auto h = new F[f.length];    // h = fg
    foreach (n; 0 .. f.length) {
        foreach (i; 0 .. n+1)
    	    h[n] += f[i] * g[n-i];
    }
    return h;
}

// f -> f^q (q = p^s); calculate q-th power
F[] frobenius(F[] f, ulong q) {
    auto result = new F[f.length];
    foreach (i; 0 .. f.length) {
        if (i % q == 0) result[i] = f[i/q];
    }
    return result;
}

void main(string[] args) {
    import std.array, std.algorithm, std.conv, std.stdio;
    
    ulong[] K, A;
    {
        auto tmp = args[1 .. $].map!(to!ulong).array;
        auto M = tmp[0].to!ulong;
        K = tmp[2 .. M+3];
        A = tmp[M+3 .. $];
    }
    
    calculate(K, A).each!(x => write(x, " "));
    writeln();
}