#ifdef NACHIA #define _GLIBCXX_DEBUG #else #define NDEBUG #endif #include #include #include #include using i64 = long long; using u64 = unsigned long long; #define rep(i,n) for(int i=0; i void chmin(A& l, const A& r){ if(r < l) l = r; } template void chmax(A& l, const A& r){ if(l < r) l = r; } using namespace std; #include using Modint = atcoder::static_modint<998244353>; #include #include namespace nachia{ int Popcount(unsigned long long c) noexcept { #ifdef __GNUC__ return __builtin_popcountll(c); #else c = (c & (~0ull/3)) + ((c >> 1) & (~0ull/3)); c = (c & (~0ull/5)) + ((c >> 2) & (~0ull/5)); c = (c & (~0ull/17)) + ((c >> 4) & (~0ull/17)); c = (c * (~0ull/257)) >> 56; return c; #endif } // please ensure x != 0 int MsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return 63 - __builtin_clzll(x); #else using u64 = unsigned long long; int q = (x >> 32) ? 32 : 0; auto m = x >> q; constexpr u64 hi = 0x88888888; constexpr u64 mi = 0x11111111; m = (((m | ~(hi - (m & ~hi))) & hi) * mi) >> 35; m = (((m | ~(hi - (m & ~hi))) & hi) * mi) >> 31; q += (m & 0xf) << 2; q += 0x3333333322221100 >> (((x >> q) & 0xf) << 2) & 0xf; return q; #endif } // please ensure x != 0 int LsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return __builtin_ctzll(x); #else return MsbIndex(x & -x); #endif } } namespace nachia{ template> struct RangeMinFast{ private: static constexpr int B = 16; std::vector A; std::vector LB; std::vector RB; std::vector> spa; CompT comp; public: RangeMinFast() {} RangeMinFast(std::vector a) : A(std::move(a)) , comp() { int n = (int)A.size(); LB = A; for(int i=n-2; i>=0; i--) if(i%B != 0 && i%B != B-1){ if(comp(LB[i+1],LB[i])) LB[i] = LB[i+1]; } RB = A; for(int i=1; i namespace nachia { struct CommonIntervalDecompositionTree { enum NodeType { Prime, Dec, Inc, One }; struct Node { int parent; NodeType type; int l; int r; int length() const { return r-l; } }; std::vector tree; int m_root; CommonIntervalDecompositionTree() : m_root(-1) {} CommonIntervalDecompositionTree(std::vector P) : m_root(-1){ int n = int(P.size()); calc(n, std::move(P)); } int numNodes() const { return (int)tree.size(); } int root() const { return m_root; } const Node& operator[](int v) const { return tree[v]; } private: void calc(int n, std::vector P){ std::vector Q(n); for(int i=0; i st; std::vector coms; for(int r=1; r<=n; r++){ int a = P[r-1]; LeftBase bs = { r-1, a, a+1 }; while(!st.empty()){ if(bs.vl < st.back().vl) st.back().vl = bs.vl; if(bs.vr > st.back().vr) st.back().vr = bs.vr; auto nx = st.back(); if(rm_h.min(nx.vl, nx.vr) < nx.l){ st.pop_back(); auto& nx2 = st.back(); if(nx.vl < nx2.vl) nx2.vl = nx.vl; if(nx.vr > nx2.vr) nx2.vr = nx.vr; } else if(nx.vr - nx.vl == r - nx.l){ bs = nx; st.pop_back(); coms.push_back({ nx.l, r, nx.vl }); } else break; } st.push_back(bs); } while(st.size() >= 2){ auto nx = st.back(); st.pop_back(); auto& nx2 = st.back(); if(nx.vl < nx2.vl) nx2.vl = nx.vl; if(nx.vr > nx2.vr) nx2.vr = nx.vr; if(nx2.vr - nx2.vl == n - nx2.l) coms.push_back({ nx2.l, n, nx2.vl }); } if(st.size() != 1) coms.push_back({ 0, n, 0 }); st = {}; std::vector res; for(int i=0; i nodeid(n); for(int i=0; i sll(n); for(int i=0; i class CsrArray{ public: struct ListRange{ using iterator = typename std::vector::iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } Elem& operator[](int i) const { return begi[i]; } }; struct ConstListRange{ using iterator = typename std::vector::const_iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } const Elem& operator[](int i) const { return begi[i]; } }; private: int m_n; std::vector m_list; std::vector m_pos; public: CsrArray() : m_n(0), m_list(), m_pos() {} static CsrArray Construct(int n, std::vector> items){ CsrArray res; res.m_n = n; std::vector buf(n+1, 0); for(auto& [u,v] : items){ ++buf[u]; } for(int i=1; i<=n; i++) buf[i] += buf[i-1]; res.m_list.resize(buf[n]); for(int i=(int)items.size()-1; i>=0; i--){ res.m_list[--buf[items[i].first]] = std::move(items[i].second); } res.m_pos = std::move(buf); return res; } static CsrArray FromRaw(std::vector list, std::vector pos){ CsrArray res; res.m_n = pos.size() - 1; res.m_list = std::move(list); res.m_pos = std::move(pos); return res; } ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } int size() const { return m_n; } int fullSize() const { return (int)m_list.size(); } }; } // namespace nachia namespace nachia{ struct Graph { public: struct Edge{ int from, to; void reverse(){ std::swap(from, to); } int xorval() const { return from ^ to; } }; Graph() : m_n(0), m_e(0), m_isUndir(false) {} explicit Graph(int n, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {} explicit Graph(int n, const std::vector>& edges, int undirected = false) : m_n(n), m_isUndir(undirected){ m_e.resize(edges.size()); for(std::size_t i=0; i static Graph Input(Cin& cin, int n, bool undirected, int m, int offset = 0){ Graph res(n, undirected, m); for(int i=0; i> u >> v; res[i].from = u - offset; res[i].to = v - offset; } return res; } int numVertices() const noexcept { return m_n; } int numEdges() const noexcept { return int(m_e.size()); } int addNode() noexcept { return m_n++; } int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; } Edge& operator[](int ei) noexcept { return m_e[ei]; } const Edge& operator[](int ei) const noexcept { return m_e[ei]; } Edge& at(int ei) { return m_e.at(ei); } const Edge& at(int ei) const { return m_e.at(ei); } auto begin(){ return m_e.begin(); } auto end(){ return m_e.end(); } auto begin() const { return m_e.begin(); } auto end() const { return m_e.end(); } bool isUndirected() const noexcept { return m_isUndir; } void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); } void contract(int newV, const std::vector& mapping){ assert(numVertices() == int(mapping.size())); for(int i=0; i induce(int num, const std::vector& mapping) const { int n = numVertices(); assert(n == int(mapping.size())); for(int i=0; i indexV(n), newV(num); for(int i=0; i= 0) indexV[i] = newV[mapping[i]]++; std::vector res; res.reserve(num); for(int i=0; i= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]); return res; } CsrArray getEdgeIndexArray(bool undirected) const { std::vector> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(int i=0; i::Construct(numVertices(), src); } CsrArray getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); } CsrArray getAdjacencyArray(bool undirected) const { std::vector> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(auto e : m_e){ src.emplace_back(e.from, e.to); if(undirected) src.emplace_back(e.to, e.from); } return CsrArray::Construct(numVertices(), src); } CsrArray getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); } private: int m_n; std::vector m_e; bool m_isUndir; }; } // namespace nachia namespace nachia{ struct HeavyLightDecomposition{ private: int N; std::vector P; std::vector PP; std::vector PD; std::vector D; std::vector I; std::vector rangeL; std::vector rangeR; public: HeavyLightDecomposition(const CsrArray& E = CsrArray::Construct(1, {}), int root = 0){ N = E.size(); P.assign(N, -1); I.assign(N, 0); I[0] = root; int iI = 1; for(int i=0; i Z(N, 1); std::vector nx(N, -1); PP.resize(N); for(int i=0; i=1; i--){ int p = I[i]; Z[P[p]] += Z[p]; if(nx[P[p]] == -1) nx[P[p]] = p; if(Z[nx[P[p]]] < Z[p]) nx[P[p]] = p; } for(int p : I) if(nx[p] != -1) PP[nx[p]] = p; PD.assign(N,N); PD[root] = 0; D.assign(N,0); for(int p : I) if(p != root){ PP[p] = PP[PP[p]]; PD[p] = std::min(PD[PP[p]], PD[P[p]]+1); D[p] = D[P[p]]+1; } rangeL.assign(N,0); rangeR.assign(N,0); for(int p : I){ rangeR[p] = rangeL[p] + Z[p]; int ir = rangeR[p]; for(int e : E[p]) if(P[p] != e) if(e != nx[p]){ rangeL[e] = (ir -= Z[e]); } if(nx[p] != -1){ rangeL[nx[p]] = rangeL[p] + 1; } } for(int i=0; i PD[v]) u = P[PP[u]]; while(PP[u] != PP[v]){ u = P[PP[u]]; v = P[PP[v]]; } return (D[u] > D[v]) ? v : u; } int dist(int u, int v) const { return depth(u) + depth(v) - depth(lca(u,v)) * 2; } struct Range{ int l; int r; int size() const { return r-l; } bool includes(int x) const { return l <= x && x < r; } }; std::vector path(int r, int c, bool include_root = true, bool reverse_path = false) const { if(PD[c] < PD[r]) return {}; std::vector res(PD[c]-PD[r]+1); for(int i=0; i<(int)res.size()-1; i++){ res[i] = { rangeL[PP[c]], rangeL[c]+1 }; c = P[PP[c]]; } if(PP[r] != PP[c] || D[r] > D[c]) return {}; res.back() = { rangeL[r]+(include_root?0:1), rangeL[c]+1 }; if(res.back().l == res.back().r) res.pop_back(); if(!reverse_path) std::reverse(res.begin(),res.end()); else for(auto& a : res) a = { N - a.r, N - a.l }; return res; } Range subtree(int p) const { return { rangeL[p], rangeR[p] }; } int median(int x, int y, int z) const { return lca(x,y) ^ lca(y,z) ^ lca(x,z); } int la(int from, int to, int d) const { if(d < 0) return -1; int g = lca(from,to); int dist0 = D[from] - D[g] * 2 + D[to]; if(dist0 < d) return -1; int p = from; if(D[from] - D[g] < d){ p = to; d = dist0 - d; } while(D[p] - D[PP[p]] < d){ d -= D[p] - D[PP[p]] + 1; p = P[PP[p]]; } return I[rangeL[p] - d]; } struct ChildrenIterRange { struct Iter { const HeavyLightDecomposition& hld; int s; int operator*() const { return hld.toVtx(s); } Iter& operator++(){ s += hld.subtree(hld.I[s]).size(); return *this; } Iter operator++(int) const { auto a = *this; return ++a; } bool operator==(Iter& r) const { return s == r.s; } bool operator!=(Iter& r) const { return s != r.s; } }; const HeavyLightDecomposition& hld; int v; Iter begin() const { return { hld, hld.rangeL[v] + 1 }; } Iter end() const { return { hld, hld.rangeR[v] }; } }; ChildrenIterRange children(int v) const { return ChildrenIterRange{ *this, v }; } }; } // namespace nachia void testcase(){ int N, K; cin >> N >> K; vector A(N); rep(i,N){ cin >> A[i]; A[i]--; } auto pt = nachia::CommonIntervalDecompositionTree(A); int M = pt.numNodes(); auto tree = nachia::Graph(M, false); rep(i,M) if(i != pt.root()) tree.addEdge(pt[i].parent, i); auto hld = nachia::HeavyLightDecomposition(tree, pt.root()); auto adj = tree.getAdjacencyArray(); vector> dp(M); for(int i=M-1; i>=0; i--){ int v = hld.toVtx(i); if(v < N){ dp[v].resize(2); dp[v][1] = 1; continue; } sort(adj[v].begin(), adj[v].end(), [&](int l, int r){ return pt[l].l < pt[r].l; }); vector tmp(1); tmp[0] = 1; int t = 0; if(pt[v].type == pt.Prime){ for(int c : adj[v]){ auto& dpc = dp[c]; int k = min(K, t + int(dpc.size() - 1)); vector xtmp(k+1); rep(a,tmp.size()) rep(b,dpc.size()) if(a+b<=k){ xtmp[a+b] += tmp[a] * dpc[b]; } swap(tmp, xtmp); t = k; } tmp[1] += 1; } else { vector cx(K+1); for(int c : adj[v]){ rep(i,t+1) cx[i] += tmp[i]; auto& dpc = dp[c]; int k = min(K, t + int(dpc.size() - 1)); vector xtmp(k+1); dpc[1] -= 1; rep(a,tmp.size()) rep(b,dpc.size()) if(a+b<=k){ xtmp[a+b] += tmp[a] * dpc[b]; } swap(tmp, xtmp); t = k; rep(i,t) tmp[i+1] += cx[i]; } } swap(dp[v], tmp); } for(int k=1; k<=K; k++){ cout << dp[pt.root()][k].val() << '\n'; } } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); testcase(); return 0; }