/** * date : 2024-12-13 01:41:42 * author : Nyaan */ #define NDEBUG #pragma GCC optimize("O3,unroll-loops") #pragma GCC target("avx2") using namespace std; // intrinstic #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template using V = vector; template using VV = vector>; using vi = vector; using vl = vector; using vd = V; using vs = V; using vvi = vector>; using vvl = vector>; template using minpq = priority_queue, greater>; template struct P : pair { template constexpr P(Args... args) : pair(args...) {} using pair::first; using pair::second; P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } template P &operator*=(const S &r) { first *= r, second *= r; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } template P operator*(const S &r) const { return P(*this) *= r; } P operator-() const { return P{-first, -second}; } }; using pl = P; using pi = P; using vp = V; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template int sz(const T &t) { return t.size(); } template inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template inline T Max(const vector &v) { return *max_element(begin(v), end(v)); } template inline T Min(const vector &v) { return *min_element(begin(v), end(v)); } template inline long long Sum(const vector &v) { return accumulate(begin(v), end(v), 0LL); } template int lb(const vector &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template int ub(const vector &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template pair mkp(const T &t, const U &u) { return make_pair(t, u); } template vector mkrui(const vector &v, bool rev = false) { vector ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template vector mkuni(const vector &v) { vector ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template vector mkord(int N, F f) { vector ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template vector mkinv(vector &v) { int max_val = *max_element(begin(v), end(v)); vector inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } vector mkiota(int n) { vector ret(n); iota(begin(ret), end(ret), 0); return ret; } template T mkrev(const T &v) { T w{v}; reverse(begin(w), end(w)); return w; } template bool nxp(T &v) { return next_permutation(begin(v), end(v)); } // 返り値の型は入力の T に依存 // i 要素目 : [0, a[i]) template vector> product(const vector &a) { vector> ret; vector v; auto dfs = [&](auto rc, int i) -> void { if (i == (int)a.size()) { ret.push_back(v); return; } for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back(); }; dfs(dfs, 0); return ret; } // F : function(void(T&)), mod を取る操作 // T : 整数型のときはオーバーフローに注意する template T Power(T a, long long n, const T &I, const function &f) { T res = I; for (; n; f(a = a * a), n >>= 1) { if (n & 1) f(res = res * a); } return res; } // T : 整数型のときはオーバーフローに注意する template T Power(T a, long long n, const T &I = T{1}) { return Power(a, n, I, function{[](T &) -> void {}}); } template T Rev(const T &v) { T res = v; reverse(begin(res), end(res)); return res; } template vector Transpose(const vector &v) { using U = typename T::value_type; if(v.empty()) return {}; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { res[j][i] = v[i][j]; } } return res; } template vector Rotate(const vector &v, int clockwise = true) { using U = typename T::value_type; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { if (clockwise) { res[W - 1 - j][i] = v[i][j]; } else { res[j][H - 1 - i] = v[i][j]; } } } return res; } } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return __builtin_popcountll(a); } inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; } template inline int gbit(const T &a, int i) { return (a >> i) & 1; } template inline void sbit(T &a, int i, bool b) { if (gbit(a, i) != b) a ^= T(1) << i; } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template ostream &operator<<(ostream &os, const pair &p) { os << p.first << " " << p.second; return os; } template istream &operator>>(istream &is, pair &p) { is >> p.first >> p.second; return is; } template ostream &operator<<(ostream &os, const vector &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template istream &operator>>(istream &is, vector &v) { for (auto &x : v) is >> x; return is; } istream &operator>>(istream &is, __int128_t &x) { string S; is >> S; x = 0; int flag = 0; for (auto &c : S) { if (c == '-') { flag = true; continue; } x *= 10; x += c - '0'; } if (flag) x = -x; return is; } istream &operator>>(istream &is, __uint128_t &x) { string S; is >> S; x = 0; for (auto &c : S) { x *= 10; x += c - '0'; } return is; } ostream &operator<<(ostream &os, __int128_t x) { if (x == 0) return os << 0; if (x < 0) os << '-', x = -x; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } ostream &operator<<(ostream &os, __uint128_t x) { if (x == 0) return os << 0; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } void in() {} template void in(T &t, U &...u) { cin >> t; in(u...); } void out() { cout << "\n"; } template void out(const T &t, const U &...u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug #ifdef NyaanDebug #define trc(...) (void(0)) #endif #ifndef NyaanDebug #define trc(...) (void(0)) #endif #ifndef NyaanLocal #define trc2(...) (void(0)) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define fi first #define se second #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // namespace nachia { template struct SmawkAlgorithm { template > std::vector> Solve(int height, int width, Gen gen, Cmp cmp = Cmp()) { if (height == 0) return std::vector>(0); auto reduce = [&](int yst, const std::vector& cols) -> std::vector { int w = int(cols.size()); std::vector idx; int r = -1; for (int q = 0; q < w; q++) { if (idx.empty()) { idx.push_back(q); r += yst; continue; } int a = cols[idx.back()]; int b = cols[q]; if (cmp(gen(r, a), gen(r, b))) { if (r + yst < height) { idx.push_back(q); r += yst; } } else { idx.pop_back(); q--; r -= yst; } } return idx; }; auto ysts = std::vector(1, 1); auto cols = std::vector>(1); for (int i = 0; i < width; i++) cols[0].push_back(i); cols[0] = reduce(1, cols[0]); while (true) { int nxst = ysts.back() * 2; if (height < nxst) break; auto nxc = reduce(nxst, cols.back()); int w = nxc.size(); for (int i = 0; i < w; i++) nxc[i] = cols.back()[nxc[i]]; cols.push_back(move(nxc)); ysts.push_back(nxst); } std::vector> ans(height, std::make_pair(gen(0, 0), 0)); while (cols.size()) { auto x = std::move(cols.back()); cols.pop_back(); int st = ysts.back(); ysts.pop_back(); int p = 0; for (int y = st - 1; y < height; y += st * 2) { int r = y + st < height ? ans[y + st].second : width - 1; ans[y] = std::make_pair(gen(y, x[p]), x[p]); while (p + 1 < int(x.size()) && x[p + 1] <= r) { int xp = x[++p]; auto fxp = gen(y, xp); if (!cmp(ans[y].first, fxp)) ans[y] = std::make_pair(fxp, xp); } } } return ans; } }; } // namespace nachia namespace nachia { template std::vector> ConvexMinPlusConvolution( const std::vector& a, const std::vector& b, Elem Inf) { int n = a.size(); int m = b.size(); return nachia::SmawkAlgorithm().Solve( n + m - 1, m, [&](int y, int x) -> Elem { return (y < x || n <= y - x) ? Inf : a[y - x] + b[x]; }); } } // namespace nachia // using namespace std; using namespace std; // NxN 行列がある // m_i := argmin_j (A_{i,j}) が単調増加であるときに m_i を列挙する // f(i, j, k) : // A[i][j] と A[i][k] を比較 (j < k が保証されている) // A[i][j] <= A[i][k] のとき true を返す関数を入れる (等号はどちらでもよい) vector monotone_minima(int N, int M, const function& f) { vector res(N); auto dfs = [&](auto rc, int is, int ie, int l, int r) -> void { if (is == ie) return; int i = (is + ie) / 2; int m = l; for (int k = l + 1; k < r; k++) { if (!f(i, m, k)) m = k; } res[i] = m; rc(rc, is, i, l, m + 1); rc(rc, i + 1, ie, m, r); }; dfs(dfs, 0, N, 0, M); return res; } // NxM 行列がある // m_i := argmin_j (A_{i,j}) が単調増加であるときに m_i を列挙する // A(i, j) : A[i][j] を返す関数 template vector monotone_minima(int N, int M, const function& A) { function f = [&](int i, int j, int k) -> bool { return A(i, j) <= A(i, k); }; return monotone_minima(N, M, f); } /** * @brief monotone minima */ // a は下に凸, b は自由 template vector concave_min_plus_convolution(const vector& a, const vector& b) { if (a.empty() or b.empty()) return {}; int n = a.size(), m = b.size(); auto argmin = monotone_minima(n + m - 1, m, [&](int i, int j, int k) { if (i < k) return true; if (i - j >= n) return false; return a[i - j] + b[j] <= a[i - k] + b[k]; }); vector ans(n + m - 1); for (int i = 0; i < n + m - 1; i++) { int j = argmin[i]; ans[i] = a[i - j] + b[j]; } return ans; } // a は上に凸, b は自由 template vector concave_max_plus_convolution(const vector& a, const vector& b) { if (a.empty() or b.empty()) return {}; int n = a.size(), m = b.size(); auto argmin = monotone_minima(n + m - 1, m, [&](int i, int j, int k) { if (i < k) return true; if (i - j >= n) return false; return a[i - j] + b[j] >= a[i - k] + b[k]; }); vector ans(n + m - 1); for (int i = 0; i < n + m - 1; i++) { int j = argmin[i]; ans[i] = a[i - j] + b[j]; } return ans; } using namespace std; struct Timer { chrono::high_resolution_clock::time_point st; Timer() { reset(); } void reset() { st = chrono::high_resolution_clock::now(); } long long elapsed() { auto ed = chrono::high_resolution_clock::now(); return chrono::duration_cast(ed - st).count(); } long long operator()() { return elapsed(); } }; using namespace Nyaan; using u32 = unsigned int; int N, Q; vl A, B; ll B2[TEN(6)]; void q() { Timer timer; in(N, Q); A.resize(N), B.resize(N); in(A, B); rep(i, TEN(6)) B2[i] = infLL; ll* b = B2 + 5 * TEN(5); rep(i, N) b[i] = B[i]; vl P(Q), X(Q), K(Q); in3(P, X, K); each(p, P)-- p; each(k, K) k -= 2; int S = 1800; for (int is = 0; is < Q; is += S) { int ie = min(Q, is + S); vl A2 = A; vector pos; reg(i, is, ie) { pos.push_back(P[i]); A2[P[i]] = TEN(10); } auto C = nachia::ConvexMinPlusConvolution(B, A2, TEN(11)); pos = mkuni(pos); /* reg(i, is, ie) { ll ans = C[K[i]].fi; A[P[i]] = X[i]; each(p, pos) { int q = K[i] - p; if ((0 <= q and q < N)) amin(ans, A[p] + B[q]); } out(ans); } */ reg(i, is, ie) { ll ans[8]; rep(ii, 8) ans[ii] = infLL; ans[0] = C[K[i]].fi; A[P[i]] = X[i]; int j = 0; for (; j + 4 <= sz(pos); j += 4) { ans[0] = min(ans[0], A[pos[j + 0]] + b[K[i] - pos[j + 0]]); ans[1] = min(ans[1], A[pos[j + 1]] + b[K[i] - pos[j + 1]]); ans[2] = min(ans[2], A[pos[j + 2]] + b[K[i] - pos[j + 2]]); ans[3] = min(ans[3], A[pos[j + 3]] + b[K[i] - pos[j + 3]]); } for (; j < sz(pos); j++) { int p = pos[j]; ans[0] = min(ans[0], A[p] + b[K[i] - p]); } out(*min_element(ans, ans + 8)); } } trc2(timer()); /* struct Line { int x, i; Line() : i(-1), x(0) {} Line(int _i, int _x) : i(_i), x(_x) {} ll operetor(ll k) { if (i == -1) return infLL; int j = k - i; if (!(0 <= j and j < N)) return infLL; return x + B[j]; } }; */ /* int len = 1; while (len < Q) len *= 2; DivideInterval di{len}; // (p,x) VV qs(2 * len); { vi lastA = A; vi lastT(N); rep(t, Q) { int p = P[t], x = X[t]; di.apply(lastT[p], t, [&](int i) { qs[i].emplace_back(p, lastA[p]); }); lastA[p] = x; lastT[p] = t; } rep(p, N) { di.apply(lastT[p], Q, [&](int i) { qs[i].emplace_back(p, lastA[p]); }); } } vl xs; rep(i, 2 * N - 1) xs.push_back(i); LiChaoTree lct(xs, Line{}); */ } void Nyaan::solve() { int t = 1; // in(t); while (t--) q(); }