#include using namespace std; #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #define INT(...) \ int __VA_ARGS__; \ IN(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ IN(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ IN(__VA_ARGS__) #define CHR(...) \ char __VA_ARGS__; \ IN(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ IN(__VA_ARGS__) #define ll long long #define yes cout<<"Yes"<<"\n" #define no cout<<"No"<<"\n" #define rep(i,a,b) for(int i=a;i=b;i--) #define fore(i,a) for(auto &i:a) #define all(x) (x).begin(),(x).end() #define allr(x) (x).rbegin(),(x).rend() #define SUM(v) accumulate(all(v), 0LL) #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define lb(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define ub(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define pii pair #define pll pair #define pb push_back #define eb emplace_back #define ff first #define ss second #define vi vector #define vll vector #define vc vector #define vvi vector> #define vec(type, name, ...) vector name(__VA_ARGS__) #define VEC(type, name, size) \ vector name(size); \ IN(name) int scan() { return getchar(); } void scan(int &a) { cin >> a; } void scan(long long &a) { cin >> a; } void scan(char &a) { cin >> a; } void scan(double &a) { cin >> a; } void scan(string &a) { cin >> a; } template void scan(pair &p) { scan(p.first), scan(p.second); } template void scan(vector &); template void scan(vector &a) { for(auto &i : a) scan(i); } template void scan(T &a) { cin >> a; } void IN() {} template void IN(Head &head, Tail &...tail) { scan(head); IN(tail...); } template void print(const T &a) { cout << a; } void OUT() { cout << endl; } template void OUT(const Head &head, const Tail &...tail) { print(head); if(sizeof...(tail)) cout << ' '; OUT(tail...); } #define vv(type, name, h, ...) vector> name(h, vector(__VA_ARGS__)) #define VV(type, name, h, w) \ vector> name(h, vector(w)); \ IN(name) #define vvv(type, name, h, w, ...) vector>> name(h, vector>(w, vector(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector>>> name(a, vector>>(b, vector>(c, vector(__VA_ARGS__)))) template using min_priority_queue = priority_queue, greater>; template pair operator-(const pair &x, const pair &y) { return pair(x.ff - y.ff, x.ss - y.ss); } template pair operator+(const pair &x, const pair &y) { return pair(x.ff + y.ff, x.ss + y.ss); } template pair operator&(const pair &l, const pair &r) { return pair(max(l.ff, r.ff), min(l.ss, r.ss)); } template vector &operator--(vector &v) { fore(e, v) e--; return v; } template vector operator--(vector &v, int) { auto res = v; fore(e, v) e--; return res; } template vector &operator++(vector &v) { fore(e, v) e++; return v; } template vector operator++(vector &v, int) { auto res = v; fore(e, v) e++; return res; } template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()) //座標圧縮 template void zip(vector &x) { vector y = x; UNIQUE(y); for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); } } template T ceil(T x, T y) { assert(y >= 1); return (x > 0 ? (x + y - 1) / y : x / y); } template T floor(T x, T y) { assert(y >= 1); return (x > 0 ? x / y : (x + y - 1) / y); } long long POW(long long x, int n) { long long res = 1LL; for(; n; n >>= 1, x *= x) if(n & 1) res *= x; return res; } //0^n=0 long long modpow(long long a, long long n, long long mod) { a%=mod; assert(a!=0||n!=0); if(a==0)return 0; long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } //return 0<=a&&a> x; return x; } ll lin() { unsigned long long x; cin >> x; return x; } long long sqrtll(long long x) { assert(x >= 0); long long rev = sqrt(x); while(rev * rev > x) --rev; while((rev+1) * (rev+1)<=x) ++rev; return rev; } int logN(long long n){ int ret=1; while((1LL<::max() / 2; const long long INFL = numeric_limits::max() / 2; #define inf INFINITY template void debug(vector a){ rep(i,0,(int)a.size()){ cout< class modint { using u64 = std::uint_fast64_t; public: u64 a; constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {} constexpr u64 &val() noexcept { return a; } constexpr const u64 &val() const noexcept { return a; } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint &operator+=(const modint rhs) noexcept { a += rhs.a; if (a >= Modulus) { a -= Modulus; } return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if (a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint &operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) { *this *= rhs; } rhs *= rhs; exp /= 2; } return *this; } friend bool operator==(const modint& a,const modint& b) { return a.val()==b.val(); } friend bool operator!=(const modint& a,const modint& b) { return a.val()!=b.val(); } }; using mint9=modint<998244353>; using mint1=modint<1000000007>; //costを指定しないと重みなし辺になります struct Edge{ int from,to; ll cost; Edge()=default; Edge(int from,int to,ll cost=1):from(from),to(to),cost(cost){} operator int() const {return to;} }; constexpr pii dx4[4] = {pii{-1, 0},pii{0, -1}, pii{0, 1}, pii{1, 0} }; constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}}; constexpr pii dx[100]={{1,0},{0,1},{1,1},{0,0}}; #define el "\n" #define endl "\n" #define fastio std::cin.sync_with_stdio(false);std::cin.tie(nullptr); vll bf(int n,int m,vi &u,vi &v){ vector> g(n); rep(i,0,m){ int a,b;tie(a,b)={u[i],v[i]}; g[a].insert(b);g[b].insert(a); } auto con=[&](int a,int b){ return g[a].find(b)!=g[a].end(); }; vll ans(11); rep(A,0,n){ rep(B,A+1,n){ rep(C,B+1,n){ rep(D,C+1,n){ vi a={A,B,C,D}; vi deg(4); int cnt{}; rep(i,0,4){ rep(j,i+1,4){ if(i==j)continue; if(con(a[i],a[j])){ deg[i]++; deg[j]++; cnt++; } } } if(SUM(deg)==12)ans[10]++; else if(MAX(deg)==0)ans[0]++; else if(cnt==1)ans[1]++; else if(cnt==2){ if(MAX(deg)==2)ans[2]++; else ans[3]++; }else if(cnt==3){ if(MAX(deg)==3)ans[4]++; else if(MIN(deg)==0)ans[6]++; else ans[5]++; }else if(cnt==4){ if(MAX(deg)==MIN(deg)&&MAX(deg)==2)ans[7]++; else ans[8]++; }else ans[9]++; } } } } return ans; } //{1,1,1,1,1,1,1,1,1,1,1} mint9 solveVec1(int n,int m){ mint9 res=1; rep(i,0,4)res*=n-i; rep(i,1,4+1)res/=i; return res; } //{0,1,2,2,3,3,3,4,4,5,6} mint9 solveVec2(int n,int m){ mint9 res=12*m; rep(i,0,2)res*=n-i-2; res/=24; return res; } vector deg; //{0,0,1,0,3,2,3,4,5,8,12}, mint9 solveVec3(int n,int m,vi &u,vi &v){ mint9 res=0; deg.resize(n); rep(i,0,m){ deg[u[i]]++;deg[v[i]]++; } rep(i,0,n){ res+=(deg[i]-1)*deg[i]/2; } res*=(n-3); return res; } //{0,0,0,1,0,1,0,2,1,2,3} mint9 solveVec4(int n,int m,vi &u,vi &v){ mint9 res=0; rep(i,0,m){ res+=(m-deg[u[i]]-deg[v[i]]+1); } res/=2; return res; } //{0,0,0,0,1,0,0,0,1,2,4} mint9 solveVec5(int n,int m,vi &u,vi &v){ mint9 res=0; rep(i,0,n){ if(deg[i]>=3){ mint9 tmp=deg[i]*(deg[i]-1);tmp*=(deg[i]-2); tmp/=6; res+=tmp; } } return res; } template vector> EnumerateTriangles(G& g){ int n=g.size(); vector> h(n); vector deg(n); for(int i=0;i> res; vector flag(n); for(int i=0;i(次数の大きい頂点)とすることで出次数をいい感じに抑えつつ DAGにできる 参考 https://ei1333.github.io/library/graph/others/enumerate-triangles.hpp.html https://www.slideshare.net/slideshow/trianguler/38443802#58 */ vector> tr; //{0,0,0,0,0,1,0,4,2,6,12} mint9 solveVec6(int n,int m,vi u,vi v){ mint9 res=0; rep(i,0,m){ res+=(deg[u[i]]-1)*(deg[v[i]]-1); } res-=3*(ll)tr.size(); return res; } //{0,0,0,1,0,1,0,2,1,2,3}, mint9 solveVec7(int n,int m,vi &u,vi &v){ mint9 res=tr.size(); res*=(n-3); return res; } vector cnt_a; vector cnt_b; vector cnt_c; vll cnt; //{0,1,0,2,0,0,0,0,0,0,0}, mint9 solveVec8(int n,int m,vi u,vi v){ mint9 res=0; constexpr ll B=64; using ull=unsigned long long; constexpr int MAXN=200000; constexpr int blocks=((MAXN+B-1)>>6); cnt_a.resize(m,-1); cnt_b.resize(m,-1); cnt.resize(m,n); cnt_c.resize(m); ull g[MAXN]; rep(i,0,blocks){ memset(g,0,sizeof(g)); rep(j,0,m){ if(i==(v[j]>>6))g[u[j]]|=(1ull<<(v[j]&(63))); if(i==(u[j]>>6))g[v[j]]|=(1ull<<(u[j]&(63))); } rep(j,0,m){ cnt[j]-=__builtin_popcountll(g[u[j]]|g[v[j]]); cnt_a[j]+=__builtin_popcountll(g[u[j]]&(~g[v[j]])); cnt_b[j]+=__builtin_popcountll(g[v[j]]&(~g[u[j]])); cnt_c[j]+=__builtin_popcountll(g[u[j]]&g[v[j]]); } } rep(i,0,m){ res+=cnt[i]*(cnt[i]-1)/2; } return res; } //{0,0,0,0,0,0,0,0,1,4,12} mint9 solveVec9(int n,int m,vi &u,vi &v){ vi tdeg(n); fore(i,tr){ int a,b,c;tie(a,b,c)=i; tdeg[a]++; tdeg[b]++; tdeg[c]++; } mint9 res=0; rep(i,0,m){ res+=tdeg[u[i]]+tdeg[v[i]]; } res-=6*(ll)tr.size(); return res; } //{0,0,0,0,0,0,0,0,0,1,6} mint9 solveVec10(int n,int m,vi &u,vi &v){ map mp; rep(i,0,m){ mp[{min(u[i],v[i]),max(u[i],v[i])}]=i; } vll cnt(m); fore(i,tr){ int a,b,c;tie(a,b,c)=i; cnt[mp[{min(a,b),max(a,b)}]]++; cnt[mp[{min(b,c),max(b,c)}]]++; cnt[mp[{min(a,c),max(a,c)}]]++; } mint9 res=0; rep(i,0,m){ res+=(cnt[i]-1)*(cnt[i])/2; } return res; } //{0,0,0,0,0,1,0,4,0,0,0} mint9 solveVec11(int n,int m,vi&u,vi& v){ mint9 res=0; rep(i,0,m){ res+=cnt_a[i]*cnt_b[i]; } return res; } //{0,0,0,0,3,0,0,0,1,0,0} mint9 solveVec12(int n,int m,vi &u,vi &v){ mint9 res=0; rep(i,0,m){ res+=(cnt_a[i]-1)*(cnt_a[i])/2; res+=(cnt_b[i]-1)*(cnt_b[i])/2; } return res; } //{0,0,0,0,0,0,3,0,1,0,0} mint9 solveVec13(int n,int m,vi &u,vi &v){ mint9 res=0; rep(i,0,m){ res+=cnt_c[i]*(cnt[i]); } return res; } class CountingC4 { private: int V, threshold; vector > G; vector > > memo; vector flag1, flag2; void process_high_degree(long long& ans){ for(int i = 0; i < V; ++i){ if((int)G[i].size() <= threshold) continue; for(const int u : G[i]){ if(u > i) flag1[u] = 1; flag2[u] = 1; } for(int j = 0; j < i; ++j){ if((int)G[j].size() > threshold) continue; long long cnt1 = 0, cnt2 = 0; for(const int u : G[j]){ if(u < j || !flag2[u]) continue; if((int)G[u].size() > threshold) ++cnt1; else ++cnt2; } ans += (cnt1 + cnt2) * (cnt1 + cnt2 - 1) / 2; } for(int j = i + 1; j < V; ++j){ long long cnt = 0; for(const int u : G[j]){ if(flag1[u]) ++cnt; } ans += cnt * (cnt - 1) / 2; } for(const int u : G[i]) flag1[u] = flag2[u] = 0; } } void process_low_degree(long long& ans){ for(int i = 0; i < V; ++i){ if((int)G[i].size() > threshold) continue; for(const int u : G[i]){ for(const int v : G[i]){ if(v > u) memo[u].push_back({i, v}); } } } for(int i = 0; i < V; ++i){ for(const auto& e : memo[i]){ if(e[0] < i) ++flag1[e[1]]; else ++flag2[e[1]]; } for(const auto& e : memo[i]){ ans += (long long)(flag1[e[1]] + 2 * flag2[e[1]] - 1) * flag1[e[1]] / 2; flag1[e[1]] = flag2[e[1]] = 0; } } } public: CountingC4(const int node_size) : V(node_size), threshold(0), G(V), memo(V), flag1(V, 0), flag2(V, 0){} void add_edge(const int u, const int v){ G[u].push_back(v), G[v].push_back(u); ++threshold; } long long solve(){ threshold = floor(sqrt(2 * threshold)) / 2; long long ans = 0; process_high_degree(ans); process_low_degree(ans); return ans; } }; //{0,0,0,0,0,0,0,1,0,1,3} mint9 solveVec14(int n,int m,vi &u,vi &v){ CountingC4 cc(n); rep(i,0,m){ cc.add_edge(u[i],v[i]); } mint9 res=cc.solve(); return res; } long long modinv(long long a, long long mod) { long long b = mod, u = 1, v = 0; while (b) { long long t = a/b; a -= t*b; swap(a, b); u -= t*v; swap(u, v); } u %= mod; if (u < 0) u += mod; return u; } // matrix template struct Matrix { vector > val; Matrix(int n, int m, long long x = 0) : val(n, vector(m, x)) {} void init(int n, int m, long long x = 0) {val.assign(n, vector(m, x));} size_t size() const {return val.size();} inline vector& operator [] (int i) {return val[i];} }; template int GaussJordan(Matrix &A, bool is_extended = false) { int m = A.size(), n = A[0].size(); for (int row = 0; row < m; ++row) for (int col = 0; col < n; ++col) A[row][col] = (A[row][col] % MOD + MOD) % MOD; int rank = 0; for (int col = 0; col < n; ++col) { if (is_extended && col == n-1) break; int pivot = -1; for (int row = rank; row < m; ++row) { if (A[row][col] != 0) { pivot = row; break; } } if (pivot == -1) continue; swap(A[pivot], A[rank]); auto inv = modinv(A[rank][col], MOD); for (int col2 = 0; col2 < n; ++col2) A[rank][col2] = A[rank][col2] * inv % MOD; for (int row = 0; row < m; ++row) { if (row != rank && A[row][col]) { auto fac = A[row][col]; for (int col2 = 0; col2 < n; ++col2) { A[row][col2] -= A[rank][col2] * fac % MOD; if (A[row][col2] < 0) A[row][col2] += MOD; } } } ++rank; } return rank; } void solve(ll n,ll m,vi &u,vi &v){ vector> g(n); rep(i,0,m){ g[u[i]].pb(v[i]); g[v[i]].pb(u[i]); } tr=EnumerateTriangles(g); Matrix<998244353> mt(10,12); mint9 tmp=1; rep(i,0,4)tmp*=(n-i),tmp/=i+1; mt.val={ {1,1,1,1,1,1,1,1,1,1,1,(ll)tmp.val()}, {0,1,2,2,3,3,3,4,4,5,6,(ll)solveVec2(n,m).val()}, {0,0,1,0,3,2,3,4,5,8,12,(ll)solveVec3(n,m,u,v).val()}, {0,0,0,1,0,1,0,2,1,2,3,(ll)solveVec4(n,m,u,v).val()}, {0,0,0,0,1,0,0,0,1,2,4,(ll)solveVec5(n,m,u,v).val()}, {0,0,0,0,0,1,0,4,2,6,12,(ll)solveVec6(n,m,u,v).val()}, {0,0,0,0,0,0,1,0,1,2,4,(ll)solveVec7(n,m,u,v).val()}, {0,0,0,0,0,0,0,1,0,1,3,(ll)solveVec14(n,m,u,v).val()}, {0,0,0,0,0,0,0,0,1,4,12,(ll)solveVec9(n,m,u,v).val()}, {0,0,0,0,0,0,0,0,0,1,6,(ll)solveVec10(n,m,u,v).val()} }; GaussJordan(mt,1); mint9 ans=mt[0].back(); mint9 p=1;p/=3; cout<