use std::io::Write; fn main() { input! { n: usize, q: usize, a: [i32; n], b: [i32; n], ask: [(usize1, i32, usize); q], } let mut solver = MinPlusConvolutionPointUpdate::new(a, b); let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); for (p, x, k) in ask { solver.set(p, x); writeln!(out, "{}", solver.find(k - 2)).ok(); } } pub struct MinPlusConvolutionPointUpdate { a: Vec, // 変更する列 b: Vec, // 下に凸 size: usize, node: Vec<(usize, usize, usize)>, // L, R, Rの方が小さくなり始める場所 valid: Vec, } impl MinPlusConvolutionPointUpdate where T: std::ops::Add + Copy + Ord, { pub fn new(a: Vec, b: Vec) -> Self { assert!(a.len() > 0 && b.len() > 0); assert!(b.windows(3).all(|b| b[1] + b[1] <= b[0] + b[2])); let n = a.len(); let size = n.next_power_of_two(); let mut node = vec![(n, n, 2 * n); 2 * size]; let mut valid = vec![false; 2 * size]; for (i, (node, valid)) in node[size..] .iter_mut() .zip(valid[size..].iter_mut()) .enumerate() .take(a.len()) { *node = (i, i, i); *valid = true; } let mut res = Self { a, b, size, node, valid, }; for i in (1..size).rev() { if res.valid[2 * i + 1] { res.valid[i] = true; res.pull(i); } } res } pub fn set(&mut self, x: usize, v: T) { assert!(x < self.a.len()); self.a[x] = v; let mut pos = x + self.size; pos /= 2; while self.valid[pos] { self.pull(pos); pos /= 2; } } pub fn find(&self, x: usize) -> T { assert!(x < self.a.len() + self.b.len() - 1); let mut l = x.saturating_sub(self.b.len() - 1) + self.size; let mut r = x.min(self.a.len() - 1) + 1 + self.size; let mut ans: Option = None; while l < r { if l & 1 == 1 { let v = self.find_subtree(l, x); if ans.map_or(true, |p| p > v) { ans = Some(v); } l += 1; } if r & 1 == 1 { r -= 1; let v = self.find_subtree(r, x); if ans.map_or(true, |p| p > v) { ans = Some(v); } } l >>= 1; r >>= 1; } ans.unwrap() } fn find_subtree(&self, v: usize, x: usize) -> T { let mut pos = v; while pos < self.size { if self.node[pos].2 <= x { pos = 2 * pos + 1; } else { pos = 2 * pos; } } self.eval_at(pos - self.size, x) } fn pull(&mut self, v: usize) { assert!(v < self.size); let size = self.size; let mut x = 2 * v; while x < size { x = 2 * x + 1; } x -= size; let mut y = 2 * v + 1; while y < size { y = 2 * y; } y -= size; let mut ng = y - 1; let mut ok = x + self.b.len(); while ok - ng > 1 { let mid = (ok + ng) / 2; if self.find_subtree(2 * v, mid) >= self.find_subtree(2 * v + 1, mid) { ok = mid; } else { ng = mid; } } self.node[v] = (0, 0, ok); } // A[x] + B[z-x] >= A[y] + B[z-y] かの判定 fn eval(&self, x: usize, y: usize, z: usize) -> bool { assert!(x < y); if z < y { false } else if z >= x + self.b.len() { true } else { self.eval_at(x, z) >= self.eval_at(y, z) } } fn eval_at(&self, x: usize, z: usize) -> T { self.a[x] + self.b[z - x] } } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ----------