// QCFium 法 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline T getb(T set, int i) { return (set >> i) & T(1); } template inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<1000000007>; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; using pim = pair; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(...) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif //【直線に沿った格子路上の積】O(log(n + m)) /* * (0, 0) から (n, (an+b)//m) までの直線 y=(ax+b)/m 以下の上方向優先の最短格子路について, * 右に進むときは f,上に進むときは g を順に掛け合わせたモノイド (S, op, e) の元を返す. * * 制約:n≧0, m≧1, a≧0, b≧0 */ template S multiple_along_line(T n, T m, T a, T b, S f, S g) { // 参考 : https://github.com/hos-lyric/libra/blob/master/number/gojo.cpp // verify : https://judge.yosupo.jp/problem/sum_of_floor_of_linear Assert(n >= 0); Assert(m >= 1); Assert(a >= 0); Assert(b >= 0); // x^n を返す auto pow = [](const S& x, T n) { S res(e()), pow2 = x; while (n > 0) { if (n & 1) res = op(res, pow2); pow2 = op(pow2, pow2); n /= 2; } return res; }; S resL = e(), resR = e(); bool rev = false; while (true) { // 傾きを 1 未満,切片を 1 未満にする. if (rev) { resR = op(pow(g, b / m), resR); f = op(pow(g, a / m), f); } else { resL = op(resL, pow(g, b / m)); f = op(f, pow(g, a / m)); } a %= m; b %= m; if (a == 0 || n == 0) break; // 左側の中途半端に余っている部分を切り取る. T l = (m - b + a - 1) / a; if (l > n) { if (rev) { resR = op(pow(f, n), resR); } else { resL = op(resL, pow(f, n)); } n = 0; break; } if (rev) { resR = op(op(g, pow(f, l)), resR); } else { resL = op(resL, op(pow(f, l), g)); } b = a * l + b - m; n -= l; if (n == 0) break; // 軸を取り直して傾きを 1 より大きくする. T nn = (a * n + b) / m; T nm = a; T na = m; T nb = a * n + b - m * nn; n = nn; m = nm; a = na; b = nb; swap(f, g); rev = !rev; } return op(resL, op(pow(f, n), resR)); } //【階乗など(法が大きな素数)】 /* * Factorial_mint(int N) : O(n) * N まで計算可能として初期化する. * * mint fact(int n) : O(1) * n! を返す. * * mint fact_inv(int n) : O(1) * 1/n! を返す(n が負なら 0 を返す) * * mint inv(int n) : O(1) * 1/n を返す. * * mint perm(int n, int r) : O(1) * 順列の数 nPr を返す. * * mint bin(int n, int r) : O(1) * 二項係数 nCr を返す. * * mint bin_inv(int n, int r) : O(1) * 二項係数の逆数 1/nCr を返す. * * mint mul(vi rs) : O(|rs|) * 多項係数 nC[rs] を返す.(n = Σrs) * * mint hom(int n, int r) : O(1) * 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする) * * mint neg_bin(int n, int r) : O(1) * 負の二項係数 nCr = (-1)^r -n+r-1Cr を返す(n ≦ 0, r ≧ 0) */ class Factorial_mint { int n_max; // 階乗と階乗の逆数の値を保持するテーブル vm fac, fac_inv; public: // n! までの階乗とその逆数を前計算しておく.O(n) Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) { // verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b fac[0] = 1; repi(i, 1, n) fac[i] = fac[i - 1] * i; fac_inv[n] = fac[n].inv(); repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1); } Factorial_mint() : n_max(0) {} // ダミー // n! を返す. mint fact(int n) const { // verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b Assert(0 <= n && n <= n_max); return fac[n]; } // 1/n! を返す(n が負なら 0 を返す) mint fact_inv(int n) const { // verify : https://atcoder.jp/contests/abc289/tasks/abc289_h Assert(n <= n_max); if (n < 0) return 0; return fac_inv[n]; } // 1/n を返す. mint inv(int n) const { // verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d Assert(n > 0); Assert(n <= n_max); return fac[n - 1] * fac_inv[n]; } // 順列の数 nPr を返す. mint perm(int n, int r) const { // verify : https://atcoder.jp/contests/abc172/tasks/abc172_e Assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac[n] * fac_inv[n - r]; } // 二項係数 nCr を返す. mint bin(int n, int r) const { // verify : https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod Assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac[n] * fac_inv[r] * fac_inv[n - r]; } // 二項係数の逆数 1/nCr を返す. mint bin_inv(int n, int r) const { // verify : https://www.codechef.com/problems/RANDCOLORING Assert(n <= n_max); Assert(r >= 0); Assert(n - r >= 0); return fac_inv[n] * fac[r] * fac[n - r]; } // 多項係数 nC[rs] を返す. mint mul(const vi& rs) const { // verify : https://yukicoder.me/problems/no/2141 if (*min_element(all(rs)) < 0) return 0; int n = accumulate(all(rs), 0); Assert(n <= n_max); mint res = fac[n]; repe(r, rs) res *= fac_inv[r]; return res; } // 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする) mint hom(int n, int r) { // verify : https://mojacoder.app/users/riantkb/problems/toj_ex_2 if (n == 0) return (int)(r == 0); Assert(n + r - 1 <= n_max); if (r < 0 || n - 1 < 0) return 0; return fac[n + r - 1] * fac_inv[r] * fac_inv[n - 1]; } // 負の二項係数 nCr を返す(n ≦ 0, r ≧ 0) mint neg_bin(int n, int r) { // verify : https://atcoder.jp/contests/abc345/tasks/abc345_g if (n == 0) return (int)(r == 0); Assert(-n + r - 1 <= n_max); if (r < 0 || -n - 1 < 0) return 0; return (r & 1 ? -1 : 1) * fac[-n + r - 1] * fac_inv[r] * fac_inv[-n - 1]; } }; Factorial_mint fm(123); //【一次式の累乗切り捨て和】O((P Q)^2 log(n + m)) /* * Σi∈[0..n) i^P floor((a i + b) / m)^Q を返す. * * 利用:【直線に沿った格子路上の積(モノイド)】 */ int exapfs, eyapfs; template struct Sapfs { vector v = vector((exapfs + 1) * (eyapfs + 1)); T f = 0, g = 0; #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Sapfs& x) { os << "(" << x.v << "," << x.f << "," << x.g << ")"; return os; } #endif }; template Sapfs opapfs(Sapfs b, Sapfs a) { vector> bin_f(exapfs + 1, vector(exapfs + 1)); bin_f[0][0] = 1; repi(i, 1, exapfs) repi(j, 0, i) { if (j > 0) bin_f[i][j] += bin_f[i - 1][j - 1]; if (j < i) bin_f[i][j] += bin_f[i - 1][j] * b.f; } vector> bin_g(eyapfs + 1, vector(eyapfs + 1)); bin_g[0][0] = 1; repi(i, 1, eyapfs) repi(j, 0, i) { if (j > 0) bin_g[i][j] += bin_g[i - 1][j - 1]; if (j < i) bin_g[i][j] += bin_g[i - 1][j] * b.g; } repi(ix, 0, exapfs) repi(jx, 0, ix) { repi(iy, 0, eyapfs) repi(jy, 0, iy) { b.v[jx * (eyapfs + 1) + jy] += a.v[ix * (eyapfs + 1) + iy] * bin_f[ix][jx] * bin_g[iy][jy]; } } b.f += a.f; b.g += a.g; return b; } template Sapfs eapfs() { Sapfs a; return a; } template S arithmetic_powered_floor_sum(T n, T m, T a, T b, int P, int Q) { // 参考 : https://qiita.com/sounansya/items/51b39e0d7bf5cc194081 //【方法】 // i^p floor((ai+b)/m)^q も一緒に計算していくことで行列積とみなせる. // クロネッカー積分解を考えることで計算量を落とせる. if (n <= 0) return S(0); Assert(m != 0); if (m < 0) { m = -m; a = -a; b = -b; } exapfs = P; eyapfs = Q; int L = max(P, Q); vector> bin(L + 1, vector(L + 1)); bin[0][0] = S(1); repi(i, 1, L) repi(j, 0, i) { if (j > 0) bin[i][j] += bin[i - 1][j - 1]; if (j < i) bin[i][j] += bin[i - 1][j]; } Sapfs f; repi(i, 0, P) f.v[i * (Q + 1) + Q] = bin[P][i]; f.f = S(1); Sapfs g; repi(i, 1, Q) g.v[(P + 1) * (Q + 1) - 1 - i] = bin[Q][i]; g.g = S(1); // a < 0 のときは Σi∈[0..n) i^P (-floor((a i + b) / m))^Q を求め,後で (-1)^Q 倍する. if (a < 0) b = m - T(1) - b; T br = smod(b, m); T bq = (b - br) / m; dump(br, bq); // (0, b/m) → (n-1, (a(n-1)+b)/m) の移動に対応する行列積を計算する. auto h = multiple_along_line, opapfs, eapfs>(n - 1, m, abs(a), br, f, g); dump(h); // (0, 0) → (0, b/m) の移動に対応する行列を右から掛ける. S res(0); S bq_pow(1); repi(i, 0, Q) { res += h.v[i] * bq_pow; if (i < Q) bq_pow *= bq; } if (P == 0) res += bq_pow; if ((a < 0) && (Q & 1)) res *= S(-1); return res; } //【切り捨て除算】O(1) /* * a, b の正負によらず,数学的な floor(a / b) を返す. */ template T floor_div(T a, T b) { // verify : https://atcoder.jp/contests/abc315/tasks/abc315_g Assert(b != 0); // 分母が負の場合は,分子と分母に -1 を掛けて分母を正にする. if (b < 0) { a *= -1; b *= -1; }; // 分子が非負の場合は,a / b で切り捨てになる. if (a >= 0) return a / b; // 分子が負の場合は,左右反転して切り上げ商を計算し,再度左右反転する. else return -((-a + b - 1) / b); } mint naive(ll n, ll m, ll a, ll b, int ex, int ey) { mint res = 0; rep(x, n) { ll y = floor_div(a * x + b, m); res += mint(x).pow(ex) * mint(y).pow(ey); } return res; } // 自動生成 namespace aaa { using S = tuple; S op(S b, S a) { auto [a6, a8, a12, a15, a16, a21, a36, a38, a40, a42, a55, a64, a76, a88, a91, a96, a113, \ a128, a192, a200, a262, a264, a302, a320, a433, a524, a576, a604, a704, a881, \ a1394, a1600, a2024, a3413] = a; auto [b6, b8, b12, b15, b16, b21, b36, b38, b40, b42, b55, b64, b76, b88, b91, b96, b113, \ b128, b192, b200, b262, b264, b302, b320, b433, b524, b576, b604, b704, b881, \ b1394, b1600, b2024, b3413] = b; mint c6, c8, c12, c15, c16, c21, c36, c38, c40, c42, c55, c64, c76, c88, c91, c96, c113, \ c128, c192, c200, c262, c264, c302, c320, c433, c524, c576, c604, c704, c881, \ c1394, c1600, c2024, c3413; c6 = a6 + b6; c8 = a8 + b8; c12 = a12 + b12; c15 = a15 + a6 * b6 + b15; c16 = a16 + \ b16; c21 = a21 + a6 * b6 + b21; c36 = a36 + a12 * b6 + b36; c38 = a38 + a6 * b8 + \ b38; c40 = a40 + a8 * b6 + a6 * b8 + b40; c42 = a42 + a6 * b12 + b42; c55 = a55 + \ a36 * b6 + a12 * b15 + b55; c64 = a64 + a16 * b8 + b64; c76 = a76 + a6 * b16 + \ b76; c88 = a88 + a16 * b6 + a12 * b8 + b88; c91 = a91 + a42 * b6 + a6 * b36 + \ b91; c96 = a96 + a16 * b6 + a6 * b16 + b96; c113 = a113 + a38 * b6 + a21 * b8 + \ a6 * b40 + b113; c128 = a128 + a16 * b16 + b128; c192 = a192 + a16 * b12 + \ a12 * b16 + b192; c200 = a200 + a88 * b6 + a36 * b8 + a16 * b15 + a12 * b40 + \ b200; c262 = a262 + a76 * b8 + a6 * b64 + b262; c264 = a264 + a76 * b6 + a42 * b8 + \ a6 * b88 + b264; c302 = a302 + a76 * b6 + a21 * b16 + a6 * b96 + b302; c320 = a320 \ + a64 * b6 + a96 * b8 + a16 * b40 + a6 * b64 + b320; c433 = a433 + a264 * b6 + \ a91 * b8 + a76 * b15 + a42 * b40 + a6 * b200 + b433; c524 = a524 + a76 * b16 + \ a6 * b128 + b524; c576 = a576 + a192 * b6 + a36 * b16 + a16 * b36 + a12 * b96 + \ b576; c604 = a604 + a76 * b12 + a42 * b16 + a6 * b192 + b604; c704 = a704 + \ a128 * b6 + a192 * b8 + a12 * b64 + a16 * b88 + b704; c881 = a881 + a262 * b6 + \ a302 * b8 + a76 * b40 + a21 * b64 + a6 * b320 + b881; c1394 = a1394 + a604 * b6 + \ a91 * b16 + a76 * b36 + a42 * b96 + a6 * b576 + b1394; c1600 = a1600 + a704 * b6 + \ a576 * b8 + a128 * b15 + a192 * b40 + a36 * b64 + a16 * b200 + a12 * b320 + \ b1600; c2024 = a2024 + a524 * b6 + a604 * b8 + a42 * b64 + a76 * b88 + a6 * b704 + \ b2024; c3413 = a3413 + a2024 * b6 + a1394 * b8 + a524 * b15 + a604 * b40 + \ a91 * b64 + a76 * b200 + a42 * b320 + a6 * b1600 + b3413; return { c6, c8, c12, c15, c16, c21, c36, c38, c40, c42, c55, c64, c76, c88, c91, c96, c113, \ c128, c192, c200, c262, c264, c302, c320, c433, c524, c576, c604, c704, c881, \ c1394, c1600, c2024, c3413 }; } S e() { mint c6, c8, c12, c15, c16, c21, c36, c38, c40, c42, c55, c64, c76, c88, c91, c96, c113, \ c128, c192, c200, c262, c264, c302, c320, c433, c524, c576, c604, c704, c881, \ c1394, c1600, c2024, c3413; c6 = 0; c8 = 0; c12 = 0; c15 = 0; c16 = 0; c21 = 0; c36 = 0; c38 = 0; c40 = 0; c42 = 0; c55 = 0; c64 = 0; \ c76 = 0; c88 = 0; c91 = 0; c96 = 0; c113 = 0; c128 = 0; c192 = 0; c200 = 0; c262 = 0; c264 = 0; \ c302 = 0; c320 = 0; c433 = 0; c524 = 0; c576 = 0; c604 = 0; c704 = 0; c881 = 0; c1394 = 0; c1600 = \ 0; c2024 = 0; c3413 = 0; return { c6, c8, c12, c15, c16, c21, c36, c38, c40, c42, c55, c64, c76, c88, c91, c96, c113, \ c128, c192, c200, c262, c264, c302, c320, c433, c524, c576, c604, c704, c881, \ c1394, c1600, c2024, c3413 }; } S f_() { mint c6, c8, c12, c15, c16, c21, c36, c38, c40, c42, c55, c64, c76, c88, c91, c96, c113, \ c128, c192, c200, c262, c264, c302, c320, c433, c524, c576, c604, c704, c881, \ c1394, c1600, c2024, c3413; c6 = 1; c8 = 0; c12 = 2; c15 = 0; c16 = 0; c21 = 1; c36 = 1; c38 = 0; c40 = 0; c42 = 2; c55 = 0; c64 = 0; \ c76 = 0; c88 = 0; c91 = 1; c96 = 0; c113 = 0; c128 = 0; c192 = 0; c200 = 0; c262 = 0; c264 = 0; \ c302 = 0; c320 = 0; c433 = 0; c524 = 0; c576 = 0; c604 = 0; c704 = 0; c881 = 0; c1394 = 0; c1600 = \ 0; c2024 = 0; c3413 = 0; return { c6, c8, c12, c15, c16, c21, c36, c38, c40, c42, c55, c64, c76, c88, c91, c96, c113, \ c128, c192, c200, c262, c264, c302, c320, c433, c524, c576, c604, c704, c881, \ c1394, c1600, c2024, c3413 }; } S g_() { mint c6, c8, c12, c15, c16, c21, c36, c38, c40, c42, c55, c64, c76, c88, c91, c96, c113, \ c128, c192, c200, c262, c264, c302, c320, c433, c524, c576, c604, c704, c881, \ c1394, c1600, c2024, c3413; c6 = 0; c8 = 1; c12 = 0; c15 = 0; c16 = 2; c21 = 0; c36 = 0; c38 = 1; c40 = -1; c42 = 0; c55 = 0; c64 = \ 1; c76 = 2; c88 = -1; c91 = 0; c96 = 0; c113 = -1; c128 = 2; c192 = 0; c200 = 1; c262 = 1; c264 = -\ 1; c302 = 0; c320 = -1; c433 = 1; c524 = 2; c576 = 0; c604 = 0; c704 = -1; c881 = -1; c1394 = 0; \ c1600 = 1; c2024 = -1; c3413 = 1; return { c6, c8, c12, c15, c16, c21, c36, c38, c40, c42, c55, c64, c76, c88, c91, c96, c113, \ c128, c192, c200, c262, c264, c302, c320, c433, c524, c576, c604, c704, c881, \ c1394, c1600, c2024, c3413 }; } auto f = f_(); auto g = g_(); } // 自動生成 namespace bbb { using S = tuple; S op(S b, S a) { auto [a1604,a1608,a1645,a1690,a1192716,a1270420,a1288925,a1327202,a2505680,\ a2524260,a2585060,a2597320,a128533279,a321880651,a408685132,\ a599669280,a641046429,a642596329,a774556867,a799646519,a834538187,\ a868580847,a887793047] = a; auto [b1604,b1608,b1645,b1690,b1192716,b1270420,b1288925,b1327202,b2505680,\ b2524260,b2585060,b2597320,b128533279,b321880651,b408685132,\ b599669280,b641046429,b642596329,b774556867,b799646519,b834538187,\ b868580847,b887793047] = b; mint c1604,c1608,c1645,c1690,c1192716,c1270420,c1288925,c1327202,c2505680,\ c2524260,c2585060,c2597320,c128533279,c321880651,c408685132,\ c599669280,c641046429,c642596329,c774556867,c799646519,c834538187,\ c868580847,c887793047; c1604=a1604 + b1604;c1608=a1608 + b1608;c1645=a1645 + \ b1645;c1690=a1690 + b1690;c1192716=a1192716 + a1608*b1604 + \ b1192716;c1270420=a1270420 + a1604*b1608 + b1270420;c1288925=a1288925 \ + a1690*b1645 + b1288925;c1327202=a1327202 + a1604*b1690 + \ b1327202;c2505680=a2505680 + a1645*b1604 + a1604*b1645 + \ b2505680;c2524260=a2524260 + a1645*b1608 + a1608*b1645 + \ b2524260;c2585060=a2585060 + a1690*b1604 + a1604*b1690 + \ b2585060;c2597320=a2597320 + a1690*b1608 + a1608*b1690 + \ b2597320;c128533279=a128533279 + a887793047*b1604 + a834538187*b1645 \ + a1288925*b1192716 + a1192716*b1288925 + a2597320*b2505680 + \ b128533279 + a1690*b774556867 + \ a1608*b868580847;c321880651=a321880651 + a1327202*b1608 + \ a1270420*b1690 + a1604*b2597320 + b321880651;c408685132=a408685132 + \ a321880651*b1604 + a599669280*b1690 + a1327202*b1192716 + \ a1270420*b2585060 + b408685132 + \ a1604*b834538187;c599669280=a599669280 + a1270420*b1604 + \ a1604*b1192716 + b599669280;c641046429=a641046429 + a799646519*b1604 \ + a408685132*b1645 + a642596329*b1192716 + a599669280*b1288925 + \ a321880651*b2505680 + a1604*b128533279 + b641046429 + \ a1327202*b774556867 + a1270420*b868580847;c642596329=a642596329 + \ a1327202*b1645 + a1604*b1288925 + b642596329;c774556867=a774556867 + \ a2524260*b1604 + a1192716*b1645 + a1645*b1192716 + a1608*b2505680 + \ b774556867;c799646519=a799646519 + a642596329*b1608 + \ a321880651*b1645 + a1270420*b1288925 + a1327202*b2524260 + b799646519 \ + a1604*b887793047;c834538187=a834538187 + a2597320*b1604 + \ a1192716*b1690 + a1690*b1192716 + a1608*b2585060 + \ b834538187;c868580847=a868580847 + a1288925*b1604 + a2585060*b1645 + \ a1604*b1288925 + a1690*b2505680 + b868580847;c887793047=a887793047 + \ a1288925*b1608 + a2597320*b1645 + a1608*b1288925 + a1690*b2524260 + \ b887793047; return { c1604,c1608,c1645,c1690,c1192716,c1270420,c1288925,c1327202,c2505680,\ c2524260,c2585060,c2597320,c128533279,c321880651,c408685132,\ c599669280,c641046429,c642596329,c774556867,c799646519,c834538187,\ c868580847,c887793047 }; } S e() { mint c1604, c1608, c1645, c1690, c1192716, c1270420, c1288925, c1327202, c2505680, \ c2524260, c2585060, c2597320, c128533279, c321880651, c408685132, \ c599669280, c641046429, c642596329, c774556867, c799646519, c834538187, \ c868580847, c887793047; return { c1604,c1608,c1645,c1690,c1192716,c1270420,c1288925,c1327202,c2505680,\ c2524260,c2585060,c2597320,c128533279,c321880651,c408685132,\ c599669280,c641046429,c642596329,c774556867,c799646519,c834538187,\ c868580847,c887793047 }; } S f_() { mint c1604, c1608, c1645, c1690, c1192716, c1270420, c1288925, c1327202, c2505680, \ c2524260, c2585060, c2597320, c128533279, c321880651, c408685132, \ c599669280, c641046429, c642596329, c774556867, c799646519, c834538187, \ c868580847, c887793047; c1604=1;c1608=2;c1645=0;c1690=0;c1192716=1;c1270420=2;c1288925=0;\ c1327202=0;c2505680=0;c2524260=0;c2585060=0;c2597320=0;c128533279=0;\ c321880651=0;c408685132=0;c599669280=1;c641046429=0;c642596329=0;\ c774556867=0;c799646519=0;c834538187=0;c868580847=0;c887793047=0; return { c1604,c1608,c1645,c1690,c1192716,c1270420,c1288925,c1327202,c2505680,\ c2524260,c2585060,c2597320,c128533279,c321880651,c408685132,\ c599669280,c641046429,c642596329,c774556867,c799646519,c834538187,\ c868580847,c887793047 }; } S g_() { mint c1604, c1608, c1645, c1690, c1192716, c1270420, c1288925, c1327202, c2505680, \ c2524260, c2585060, c2597320, c128533279, c321880651, c408685132, \ c599669280, c641046429, c642596329, c774556867, c799646519, c834538187, \ c868580847, c887793047; c1604=0;c1608=0;c1645=1;c1690=2;c1192716=0;c1270420=0;c1288925=1;\ c1327202=2;c2505680=0;c2524260=0;c2585060=0;c2597320=0;c128533279=0;\ c321880651=0;c408685132=0;c599669280=0;c641046429=0;c642596329=1;\ c774556867=0;c799646519=0;c834538187=0;c868580847=0;c887793047=0; return { c1604,c1608,c1645,c1690,c1192716,c1270420,c1288925,c1327202,c2505680,\ c2524260,c2585060,c2597320,c128533279,c321880651,c408685132,\ c599669280,c641046429,c642596329,c774556867,c799646519,c834538187,\ c868580847,c887793047 }; } auto f = f_(); auto g = g_(); } // (P, Q)=(2,2) だけ例外処理する.これでもしぐっと速くなるなら頑張る. void Main1() { ll n, m, a, b; int p, q; cin >> p >> q >> n >> m >> a >> b; dump(naive(n + 1, m, a, b, p, q)); dump("-----"); mint res; if (p == 2 && q == 2) { // a < 0 のときは Σi∈[0..n) i^P (-floor((a i + b) / m))^Q を求め,後で (-1)^Q 倍する. if (a < 0) b = m - 1 - b; ll br = smod(b, m); ll bq = (b - br) / m; // (0, b/m) → (n-1, (a(n-1)+b)/m) の移動に対応する行列積を計算する. auto h = multiple_along_line(n, m, abs(a), br, bbb::f, bbb::g); dump(h); // (0, 0) → (0, b/m) の移動に対応する行列を右から掛ける. mint bq_pow(1); res += get<16>(h) * bq_pow; bq_pow *= bq; res += get<14>(h) * bq_pow; bq_pow *= bq; res += get<15>(h) * bq_pow; } else { if (a < 0) { a = -a; b = b - n * a; ll R = smod(b, m); ll Q = (b - R) / m; auto h = multiple_along_line(n, m, a, R, aaa::f, aaa::g); auto [c6, c8, c12, c15, c16, c21, c36, c38, c40, c42, c55, c64, c76, c88, c91, c96, c113, \ c128, c192, c200, c262, c264, c302, c320, c433, c524, c576, c604, c704, c881, \ c1394, c1600, c2024, c3413] = h; mint h00 = 1 + c6, h01 = c38, h02 = c262, h10 = c6 + c15, h11 = c38 + c113, h12 = c262 + c881, h20 = c36 + c55, h21 = c264 + \ c433, h22 = c2024 + c3413; // , c8, c64, c8 + c40, c64 + c320, c88 + c200, c704 + c1600, 1 vvm H{ {h00, h01, h02}, {h10, h11, h12}, {h20, h21, h22} }; vm pow_n(p + 1); pow_n[0] = 1; repi(i, 1, p) pow_n[i] = pow_n[i - 1] * n; vm pow_Q(q + 1); pow_Q[0] = 1; repi(i, 1, q) pow_Q[i] = pow_Q[i - 1] * Q; repi(s, 0, p) repi(t, 0, q) { auto ans = H[s][t]; res += fm.bin(p, s) * pow_n[p - s] * (s & 1 ? -1 : 1) * fm.bin(q, t) * pow_Q[q - t] * ans; } } else { ll R = smod(b, m); ll Q = (b - R) / m; auto h = multiple_along_line(n, m, a, R, aaa::f, aaa::g); auto [c6, c8, c12, c15, c16, c21, c36, c38, c40, c42, c55, c64, c76, c88, c91, c96, c113, \ c128, c192, c200, c262, c264, c302, c320, c433, c524, c576, c604, c704, c881, \ c1394, c1600, c2024, c3413] = h; mint h00 = 1 + c6, h01 = c38, h02 = c262, h10 = c6 + c15, h11 = c38 + c113, h12 = c262 + c881, h20 = c36 + c55, h21 = c264 + \ c433, h22 = c2024 + c3413; // , c8, c64, c8 + c40, c64 + c320, c88 + c200, c704 + c1600, 1 vvm H{ {h00, h01, h02}, {h10, h11, h12}, {h20, h21, h22} }; vm pow_Q(q + 1); pow_Q[0] = 1; repi(i, 1, q) pow_Q[i] = pow_Q[i - 1] * Q; repi(t, 0, q) { mint ans = H[p][t]; res += fm.bin(q, t) * pow_Q[q - t] * ans; } } } cout << res << "\n"; } void Main2() { ll n, m, a, b; int p, q; cin >> p >> q >> n >> m >> a >> b; cout << arithmetic_powered_floor_sum(n + 1, m, a, b, p, q) << "\n"; } int main() { input_from_file("input.txt"); // output_to_file("output.txt"); int t = 1; cin >> t; // マルチテストケースの場合 if (t > 5) { while (t--) { dump("------------------------------"); Main1(); } } else { while (t--) { dump("------------------------------"); Main2(); } } }