#include <bits/stdc++.h>
using namespace std;

#define all(x) begin(x), end(x)
#ifdef local
#define safe cerr << __LINE__ << " line " << __LINE__ << " safe\n"
#define debug(a...) debug_(#a, a)
#define orange(a...) orange_(#a, a)
template <typename ...T>
void debug_(const char *s, T ...a) {
  cerr << "\e[1;32m(" << s << ") = (";
  int cnt = sizeof...(T);
  (..., (cerr << a << (--cnt ? ", " : ")\e[0m\n")));
}
template <typename I>
void orange_(const char *s, I L, I R) {
  cerr << "\e[1;32m[ " << s << " ] = [ ";
  for (int f = 0; L != R; ++L)
    cerr << (f++ ? ", " : "") << *L;
  cerr << " ]\e[0m\n";
}
#else
#define safe ((void)0)
#define debug(...) safe
#define orange(...) safe
#endif

using lld = int64_t;
using llu = uint64_t;
using llf = long double;
using u128 = __uint128_t;

lld fdiv(lld a, lld b)
{ return a / b - (a % b && (a < 0) ^ (b < 0)); }
lld cdiv(lld a, lld b)
{ return a / b + (a % b && (a < 0) ^ (b > 0)); }

/* template <typename T>
T brute(llu a, llu b, llu c, llu n, T U, T R) {
  T res;
  for (llu i = 1, l = 0; i <= n; i++, res = res * R)
    for (llu r = (a*i+b)/c; l < r; ++l) res = res * U;
  return res;
} */
template <typename T>
T euclid(llu a, llu b, llu c, llu n, T U, T R) {
  if (!n) return T{};
  if (b >= c)
    return mpow(U, b / c) * euclid(a, b % c, c, n, U, R);
  if (a >= c)
    return euclid(a % c, b, c, n, U, mpow(U, a / c) * R);
  llu m = (u128(a) * n + b) / c;
  if (!m) return mpow(R, n);
  return mpow(R, (c - b - 1) / a) * U
    * euclid(c, (c - b - 1) % a, a, m - 1, R, U)
    * mpow(R, n - (u128(c) * m - b - 1) / a);
}
// time complexity is O(log max(a, b, c))
// UUUU R UUUUU R ... UUU R 共 N 個 R,最後一個必是 R
// 一直到第 k 個 R 前總共有 (ak+b)/c 個 U

template <typename T, T MOD> class Modular {
public:
  constexpr Modular() : v() {}
  template <typename U> Modular(const U &u) { v = static_cast<T>(0 <= u && u < MOD ? u : (u%MOD+MOD)%MOD); }
  template <typename U> explicit operator U() const { return U(v); }
  T operator()() const { return v; }
#define REFOP(type, expr...) Modular &operator type (const Modular &rhs) { return expr, *this; }
  REFOP(+=, v += rhs.v - MOD, v += MOD & (v >> width)) ; REFOP(-=, v -= rhs.v, v += MOD & (v >> width))
  // fits for MOD^2 <= 9e18
  REFOP(*=, v = static_cast<T>(1LL * v * rhs.v % MOD)) ; REFOP(/=, *this *= inverse(rhs.v))
#define VALOP(op) friend Modular operator op (Modular a, const Modular &b) { return a op##= b; }
  VALOP(+) ; VALOP(-) ; VALOP(*) ; VALOP(/)
  Modular operator-() const { return 0 - *this; }
  friend bool operator == (const Modular &lhs, const Modular &rhs) { return lhs.v == rhs.v; }
  friend bool operator != (const Modular &lhs, const Modular &rhs) { return lhs.v != rhs.v; }
  friend std::istream & operator>>(std::istream &I, Modular &m) { T x; I >> x, m = x; return I; }
  friend std::ostream & operator<<(std::ostream &O, const Modular &m) { return O << m.v; }
  Modular inv() const { return inverse(v); }
  Modular qpow(lld p) const {
    Modular r = 1, e = *this;
    while (p) {
      if (p & 1) r *= e;
      e *= e;
      p >>= 1;
    }
    return r;
  }
private:
  constexpr static int width = sizeof(T) * 8 - 1;
  T v;
  static T inverse(T a) {
    // copy from tourist's template
    T u = 0, v = 1, m = MOD;
    while (a != 0) {
      T t = m / a;
      m -= t * a; std::swap(a, m);
      u -= t * v; std::swap(u, v);
    }
    assert(m == 1);
    return u;
  }
};

constexpr int mod = 998244353;
using Mint = Modular<int, mod>;

template <int K>
struct Mat : array<array<Mint, K>, K> {
  friend Mat operator*(const Mat &a, const Mat &b) {
    Mat c(0);
    for (int i = 0; i < K; i++)
      for (int j = i; j < K; j++)
        for (int k = i; k <= j; k++)
          c[i][j] += a[i][k] * b[k][j];
    return c;
  }
  constexpr Mat(int diag = 1) {
    for (int i = 0; i < K; i++)
      for (int j = 0; j < K; j++)
        (*this)[i][j] = diag * (i == j);
  }
};

template <typename T>
T mpow(T e, llu n) {
  T r;
  while (n) {
    if (n & 1) r = r * e;
    e = e * e;
    n >>= 1;
  }
  return r;
}

constexpr int K = 15;
Mint choose[K][K] = {};


template <int SZ> void solve() {
  int p, q;
  lld N, M, A, B;
  cin >> p >> q >> N >> M >> A >> B;
  Mat<SZ> U(0), R(0);
  // (p + 1) (q + 1) + 1

    // U: x += 1
    // R: i += 1
    // 1, x
    // i, i x
    const int sum_index = (p + 1) * (q + 1);
    auto enc = [&](int x, int y) {
      assert(x <= q && x >= 0 && y <= p && y >= 0);
      return x * (p + 1) + y;
    };
    for (int i = 0; i <= q; i++)
      for (int j = 0; j <= i; j++)
        for (int z = 0; z <= p; z++)
          U[enc(j, z)][enc(i, z)] = choose[i][j];
    U[sum_index][sum_index] = 1;

    for (int i = 0; i <= p; i++)
      for (int j = 0; j <= i; j++)
        for (int z = 0; z <= q; z++)
          R[enc(z, j)][enc(z, i)] = choose[i][j];
    for (int j = 0; j <= p; j++)
      R[enc(q, j)][sum_index] = choose[p][j];
    R[sum_index][sum_index] = 1;

    Mint ans = 0;
    if (p == 0) {
      ans += Mint(fdiv(B, M)).qpow(q);
    }

    array<Mint, SZ> init_vector = {};
    init_vector[enc(0, 0)] = 1;

    bool neg = false;
    // fdiv(A * i + B, M) == -cdiv(-A * i - B, M)
    // == -fdiv(-A * i - B + M - 1, M)
    if (A < 0) {
      A = -A;
      B = -B + M - 1;

      for (int i = 0; i <= q; i++)
        for (int j = 0; j < i; j++)
          for (int z = 0; z <= p; z++)
            if ((j ^ i) & 1)
              U[enc(j, z)][enc(i, z)] *= -1;
      neg = true;
    }

    // i: 0 1 2 3
    // (9 - 2i) / 6: 1 1 0 0 0 -1

    // fdiv(A * i + B, M) = fdiv(A * i + r, M) + fdiv(B, M)
    if (B < 0) {
      lld quo = fdiv(B, M);
      // if neg, then x starts from -quo and keeps decreasing
      // if not neg, then x starts from quo and keeps increasing
      debug(A, B, quo);
      for (int i = 1; i <= q; i++) {
        init_vector[enc(i, 0)] = Mint(neg ? -quo : quo).qpow(i);
        debug(neg, quo, i);
      }
      B -= quo * M;
    }

    debug(A, B, M, N);
    for (int i = 0; i < 5; i++)
      orange(U[i].begin(), U[i].begin() + 5);
    for (int i = 0; i < 5; i++)
      orange(R[i].begin(), R[i].begin() + 5);

    auto res = euclid(A, B, M, N, U, R);

    // Mint cur = 0;
    // for (int i = 0; i < SZ; i++) {
    //   cur += init_vector[i] * res[i][enc(1, 1)];
    // }
    // debug(cur);

    for (int i = 0; i < SZ; i++) {
      ans += init_vector[i] * res[i][sum_index];
    }
    cout << ans << '\n';
    // cout << -ans << '\n';
}

signed main() {
  cin.tie(nullptr)->sync_with_stdio(false);

  for (int i = 0; i < K; i++) {
    choose[i][0] = 1;
    for (int j = 1; j <= i; j++)
      choose[i][j] = choose[i - 1][j] + choose[i - 1][j - 1];
  }

  int T;
  cin >> T;
  if (T > 5)
    while (T--) solve<10>();
  else
    while (T--) solve<122>();
}