#include #include #include #define Add(x, y) (x + y >= mod) ? (x + y - mod) : (x + y) #define lowbit(x) x & (-x) #define pi pair #define pii pair> #define iip pair, ll> #define ppii pair, pair> #define ls(k) k << 1 #define rs(k) k << 1 | 1 #define fi first #define se second #define full(l, r, x) for(auto it = l; it != r; ++it) (*it) = x #define Full(a) memset(a, 0, sizeof(a)) #define open(s1, s2) freopen(s1, "r", stdin), freopen(s2, "w", stdout); #define For(i, l, r) for(register int i = l; i <= r; ++i) #define _For(i, l, r) for(register int i = r; i >= l; --i) using namespace std; using namespace __gnu_pbds; typedef double db; typedef unsigned long long ull; typedef long long ll; bool Begin; const int N = 81, M = 1e4 + 10, mod = 1e9 + 7; inline ll read(){ ll x = 0, f = 1; char c = getchar(); while(c < '0' || c > '9'){ if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9'){ x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return x * f; } inline void write(ll x){ if(x < 0){ putchar('-'); x = -x; } if(x > 9) write(x / 10); putchar(x % 10 + '0'); } class Matrix{ public: int n, m; int a[N][N]; inline Matrix(){ memset(a, 0, sizeof(a)); } inline int* operator[](int x){ return a[x]; } inline friend Matrix operator*(Matrix A, Matrix B){ Matrix ans; ans.n = A.n, ans.m = B.m; for(int i = 1; i <= A.n; ++i) for(int j = 1; j <= B.m; ++j) for(int k = 1; k <= A.m; ++k) ans[i][j] = (ans[i][j] + 1ll * A[i][k] * B[k][j] % mod) % mod; return ans; } }now, base, t; ll c; int n, sum; int a[N]; inline int qpow(int a, ll b){ int ans = 1; while(b){ if(b & 1ll) ans = (1ll * ans * a) % mod; a = (1ll * a * a) % mod; b >>= 1ll; } return ans; } inline Matrix qpow(Matrix a, ll b){ Matrix ans = a; --b; while(b){ if(b & 1ll) ans = ans * a; a = a * a; b >>= 1ll; } return ans; } bool End; int main(){ n = read(), c = read(); for(int i = 1; i <= n; ++i){ a[i] = read(); sum = (sum + qpow(a[i], c)) % mod; } now.n = base.n = base.m = n, now.m = 1; for(int i = 1; i <= n; ++i){ now[i][1] = 1; for(int j = 1; j <= i; ++j) base[i][j] = a[j]; } now = qpow(base, c) * now; write((now[n][1] - sum + mod) % mod); cerr << '\n' << abs(&Begin - &End) / 1048576 << "MB"; return 0; }