use std::collections::*; use std::io::Write; type Map = BTreeMap; type Set = BTreeSet; type Deque = VecDeque; fn main() { input! { n: usize, q: usize, s: bytes, ask: [(u8, usize1, String); q], } type Mat = Matrix; let mut mat = vec![]; for i in 0..4 { let mut m = Mat::one(); for j in 0..4 { if i != j { m[j][j] = V(1); } } let mut trans = Mat::zero(); for i in 0..4 { for j in 0..=i { trans[j][i] = V::one(); } } mat.push(trans * m); } let mut seg = SegmentTreePURQ::new(n, Mat::one(), |a, b| *a * *b); for (i, s) in s.iter().enumerate() { seg.update_tmp(i, mat[(*s - b'A') as usize]); } seg.update_all(); let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); for (op, x, c) in ask { if op == 1 { let c = c.bytes().next().unwrap(); seg.update(x, mat[(c - b'A') as usize]); } else { let l = x; let r = c.parse::().unwrap(); let m = seg.find(l, r); let ans = m[0].iter().fold(V::zero(), |s, a| s + *a).0; writeln!(out, "{}", ans).ok(); } } } use std::ops::*; #[derive(Clone, Copy)] struct V(i32); impl Add for V { type Output = Self; fn add(self, rhs: Self) -> Self { V(self.0.min(rhs.0)) } } impl Mul for V { type Output = Self; fn mul(self, rhs: Self) -> Self { V(self.0 + rhs.0) } } const INF: i32 = 10i32.pow(9); impl Zero for V { fn zero() -> Self { V(INF) } fn is_zero(&self) -> bool { self.0 == INF } } impl One for V { fn one() -> Self { V(0) } fn is_one(&self) -> bool { self.0 == 0 } } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- // ---------- begin trait ---------- pub trait Zero: Sized + Add { fn zero() -> Self; fn is_zero(&self) -> bool; } pub trait One: Sized + Mul { fn one() -> Self; fn is_one(&self) -> bool; } pub trait Group: Zero + Sub + Neg {} pub trait SemiRing: Zero + One {} pub trait Ring: SemiRing + Group {} pub trait Field: Ring + Div {} impl Group for T where T: Zero + Sub + Neg {} impl SemiRing for T where T: Zero + One {} impl Ring for T where T: SemiRing + Group {} impl Field for T where T: Ring + Div {} // ---------- end trait ---------- // ---------- begin const matrix ---------- #[derive(Clone, Copy, Debug)] pub struct Matrix([[T; C]; R]); impl Matrix { pub fn new(a: [[T; C]; R]) -> Self { Self(a) } pub fn iter(&self) -> impl Iterator { self.0.iter() } pub fn iter_mut(&mut self) -> impl Iterator { self.0.iter_mut() } pub fn swap_row(&mut self, x: usize, y: usize) { assert!(x < R && y < R); self.0.swap(x, y); } pub fn swap_col(&mut self, x: usize, y: usize) { assert!(x < C && y < C); for mat in self.iter_mut() { mat.swap(x, y); } } } impl Zero for Matrix where T: Zero + Copy, { fn zero() -> Self { Self::new([[T::zero(); C]; R]) } fn is_zero(&self) -> bool { self.iter().flatten().all(|a| a.is_zero()) } } impl Matrix where T: Add + Copy, { pub fn matadd(&self, rhs: &Self) -> Self { let mut res = self.clone(); for (res, rhs) in res.iter_mut().zip(rhs.iter()) { for (res, rhs) in res.iter_mut().zip(rhs.iter()) { *res = *res + *rhs; } } res } } impl Add for Matrix where T: Add + Copy, { type Output = Self; fn add(self, rhs: Self) -> Self::Output { self.matadd(&rhs) } } impl Matrix where T: Sub + Copy, { pub fn matsub(&self, rhs: &Self) -> Self { let mut res = self.clone(); for (res, rhs) in res.iter_mut().zip(rhs.iter()) { for (res, rhs) in res.iter_mut().zip(rhs.iter()) { *res = *res - *rhs; } } res } } impl Sub for Matrix where T: Sub + Copy, { type Output = Self; fn sub(self, rhs: Self) -> Self::Output { self.matsub(&rhs) } } impl One for Matrix where T: Zero + One + Copy, { fn one() -> Self { let mut res = Self::zero(); for (i, a) in res.iter_mut().enumerate() { a[i] = T::one(); } res } fn is_one(&self) -> bool { self.iter().enumerate().all(|(i, a)| { a.iter() .enumerate() .all(|(j, a)| (i == j && a.is_one()) || (i != j && a.is_zero())) }) } } impl Matrix where T: Zero + Mul + Copy, { pub fn matmul(&self, rhs: &Matrix) -> Matrix { let mut res = Matrix::::zero(); for (res, a) in res.iter_mut().zip(self.iter()) { for (a, b) in a.iter().zip(rhs.iter()) { for (res, b) in res.iter_mut().zip(b.iter()) { *res = *res + *a * *b; } } } res } } impl Matrix where T: SemiRing + Copy, { pub fn matpow(&self, mut n: usize) -> Self { let mut t = Self::one(); let mut r = *self; while n > 0 { if n & 1 == 1 { t = t * r; } r = r * r; n >>= 1; } t } // I + A + .. + A^(n-1) pub fn powsum(&self, n: usize) -> Self { if n == 0 { return Self::zero(); } if n & 1 == 1 { Self::one() + *self * self.powsum(n - 1) } else { (Self::one() + *self) * (*self * *self).powsum(n / 2) } } } impl Mul> for Matrix where T: Zero + Mul + Copy, { type Output = Matrix; fn mul(self, rhs: Matrix) -> Self::Output { self.matmul(&rhs) } } impl Index for Matrix { type Output = [T; C]; fn index(&self, x: usize) -> &Self::Output { &self.0[x] } } impl IndexMut for Matrix { fn index_mut(&mut self, x: usize) -> &mut Self::Output { &mut self.0[x] } } // ---------- end const matrix ---------- // ---------- begin segment tree Point Update Range Query ---------- pub struct SegmentTreePURQ { n: usize, size: usize, data: Vec, e: T, op: F, } impl SegmentTreePURQ where T: Clone, F: Fn(&T, &T) -> T, { pub fn new(n: usize, e: T, op: F) -> Self { assert!(n > 0); let size = n.next_power_of_two(); let data = vec![e.clone(); 2 * size]; SegmentTreePURQ { n, size, data, e, op, } } pub fn update_tmp(&mut self, x: usize, v: T) { assert!(x < self.n); self.data[x + self.size] = v; } pub fn update_all(&mut self) { for i in (1..self.size).rev() { self.data[i] = (self.op)(&self.data[2 * i], &self.data[2 * i + 1]); } } pub fn update(&mut self, x: usize, v: T) { assert!(x < self.n); let mut x = x + self.size; self.data[x] = v; x >>= 1; while x > 0 { self.data[x] = (self.op)(&self.data[2 * x], &self.data[2 * x + 1]); x >>= 1; } } pub fn find(&self, l: usize, r: usize) -> T { assert!(l <= r && r <= self.n); if l == r { return self.e.clone(); } let mut l = self.size + l; let mut r = self.size + r; let mut x = self.e.clone(); let mut y = self.e.clone(); while l < r { if l & 1 == 1 { x = (self.op)(&x, &self.data[l]); l += 1; } if r & 1 == 1 { r -= 1; y = (self.op)(&self.data[r], &y); } l >>= 1; r >>= 1; } (self.op)(&x, &y) } pub fn max_right

(&self, l: usize, f: P) -> usize where P: Fn(&T) -> bool, { assert!(l <= self.n); assert!(f(&self.e)); if l == self.n { return self.n; } let mut l = l + self.size; let mut sum = self.e.clone(); while { l >>= l.trailing_zeros(); let v = (self.op)(&sum, &self.data[l]); if !f(&v) { while l < self.size { l <<= 1; let v = (self.op)(&sum, &self.data[l]); if f(&v) { sum = v; l += 1; } } return l - self.size; } sum = v; l += 1; l.count_ones() > 1 } {} self.n } pub fn min_left

(&self, r: usize, f: P) -> usize where P: Fn(&T) -> bool, { assert!(r <= self.n); assert!(f(&self.e)); if r == 0 { return 0; } let mut r = r + self.size; let mut sum = self.e.clone(); while { r -= 1; while r > 1 && r & 1 == 1 { r >>= 1; } let v = (self.op)(&self.data[r], &sum); if !f(&v) { while r < self.size { r = 2 * r + 1; let v = (self.op)(&self.data[r], &sum); if f(&v) { sum = v; r -= 1; } } return r + 1 - self.size; } sum = v; (r & (!r + 1)) != r } {} 0 } } // ---------- end segment tree Point Update Range Query ----------