#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" using namespace std; #include #line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp" namespace noya2 { template ostream &operator<<(ostream &os, const pair &p){ os << p.first << " " << p.second; return os; } template istream &operator>>(istream &is, pair &p){ is >> p.first >> p.second; return is; } template ostream &operator<<(ostream &os, const vector &v){ int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template istream &operator>>(istream &is, vector &v){ for (auto &x : v) is >> x; return is; } void in() {} template void in(T &t, U &...u){ cin >> t; in(u...); } void out() { cout << "\n"; } template void out(const T &t, const U &...u){ cout << t; if (sizeof...(u)) cout << sep; out(u...); } template void out(const vector> &vv){ int s = (int)vv.size(); for (int i = 0; i < s; i++) out(vv[i]); } struct IoSetup { IoSetup(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetup_noya2; } // namespace noya2 #line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp" namespace noya2{ const int iinf = 1'000'000'007; const long long linf = 2'000'000'000'000'000'000LL; const long long mod998 = 998244353; const long long mod107 = 1000000007; const long double pi = 3.14159265358979323; const vector dx = {0,1,0,-1,1,1,-1,-1}; const vector dy = {1,0,-1,0,1,-1,-1,1}; const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const string alp = "abcdefghijklmnopqrstuvwxyz"; const string NUM = "0123456789"; void yes(){ cout << "Yes\n"; } void no(){ cout << "No\n"; } void YES(){ cout << "YES\n"; } void NO(){ cout << "NO\n"; } void yn(bool t){ t ? yes() : no(); } void YN(bool t){ t ? YES() : NO(); } } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" namespace noya2{ unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){ if (a == 0 || b == 0) return a + b; int n = __builtin_ctzll(a); a >>= n; int m = __builtin_ctzll(b); b >>= m; while (a != b) { int mm = __builtin_ctzll(a - b); bool f = a > b; unsigned long long c = f ? a : b; b = f ? b : a; a = (c - b) >> mm; } return a << std::min(n, m); } template T gcd_fast(T a, T b){ return static_cast(inner_binary_gcd(std::abs(a),std::abs(b))); } long long sqrt_fast(long long n) { if (n <= 0) return 0; long long x = sqrt(n); while ((x + 1) * (x + 1) <= n) x++; while (x * x > n) x--; return x; } template T floor_div(const T n, const T d) { assert(d != 0); return n / d - static_cast((n ^ d) < 0 && n % d != 0); } template T ceil_div(const T n, const T d) { assert(d != 0); return n / d + static_cast((n ^ d) >= 0 && n % d != 0); } template void uniq(std::vector &v){ std::sort(v.begin(),v.end()); v.erase(unique(v.begin(),v.end()),v.end()); } template inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template inline bool range(T l, T x, T r){ return l <= x && x < r; } } // namespace noya2 #line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define repp(i,m,n) for (int i = (m); i < (int)(n); i++) #define reb(i,n) for (int i = (int)(n-1); i >= 0; i--) #define all(v) (v).begin(),(v).end() using ll = long long; using ld = long double; using uint = unsigned int; using ull = unsigned long long; using pii = pair; using pll = pair; using pil = pair; using pli = pair; namespace noya2{ /* ~ (. _________ . /) */ } using namespace noya2; #line 2 "hld_test.cpp" #line 2 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/tree/simple_tree.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" #include #line 7 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" namespace noya2::internal { template struct csr { csr () {} csr (int _n) : n(_n) {} csr (int _n, int m) : n(_n){ start.reserve(m); elist.reserve(m); } // ACL style constructor (do not have to call build) csr (int _n, const std::vector> &idx_elem) : n(_n), start(_n + 2), elist(idx_elem.size()) { for (auto &[i, e] : idx_elem){ start[i + 2]++; } for (int i = 1; i < n; i++){ start[i + 2] += start[i + 1]; } for (auto &[i, e] : idx_elem){ elist[start[i + 1]++] = e; } prepared = true; } int add(int idx, E elem){ int eid = start.size(); start.emplace_back(idx); elist.emplace_back(elem); return eid; } void build(){ if (prepared) return ; int m = start.size(); std::vector nelist(m); std::vector nstart(n + 2, 0); for (int i = 0; i < m; i++){ nstart[start[i] + 2]++; } for (int i = 1; i < n; i++){ nstart[i + 2] += nstart[i + 1]; } for (int i = 0; i < m; i++){ nelist[nstart[start[i] + 1]++] = elist[i]; } swap(elist,nelist); swap(start,nstart); prepared = true; } const auto operator[](int idx) const { return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } auto operator[](int idx){ return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } const auto operator()(int idx, int l, int r) const { return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } auto operator()(int idx, int l, int r){ return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } size_t size() const { return n; } int n; std::vector start; std::vector elist; bool prepared = false; }; } // namespace noya2::internal #line 5 "/Users/noya2/Desktop/Noya2_library/tree/simple_tree.hpp" namespace noya2 { struct simple_tree { internal::csr g; simple_tree () {} simple_tree (int _n) : g(_n, (_n - 1)*2) { if (_n == 1){ g.build(); } } void add_edge(int u, int v){ g.add(u, v); int id = g.add(v, u); if (id + 1 == (g.n - 1)*2) g.build(); } void input(int indexed = 1){ for (int i = 0; i < g.n - 1; i++){ int u, v; cin >> u >> v; u -= indexed, v -= indexed; add_edge(u, v); } } void input_parents(int indexed = 1){ for (int i = 0; i < g.n - 1; i++){ int v; cin >> v; v -= indexed; add_edge(i + 1, v); } } const auto operator[](int v) const { return g[v]; } auto operator[](int v){ return g[v]; } size_t size() const { return g.size(); } }; } // namespace noya2 #line 5 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp" namespace noya2 { using namespace std; struct hld_tree { internal::csr g; hld_tree () {} hld_tree (int _n, int _root = 0) : g(_n,(_n - 1)*2), n(_n), root(_root) { if (_n == 1){ build(); } } hld_tree (simple_tree _g, int _root = 0) : g(_g.g), n(_g.g.n), root(_root){ build(); } size_t size() const { return g.n; } int root_v() const { return root; } void add_edge(int u, int v){ g.add(u, v); int id = g.add(v, u); if (id + 1 == (n - 1)*2) build(); } void input(int indexed = 1){ for (int i = 0; i < n - 1; i++){ int u, v; cin >> u >> v; u -= indexed, v -= indexed; add_edge(u, v); } } void input_parents(int indexed = 1){ for (int i = 0; i < n - 1; i++){ int v; cin >> v; v -= indexed; add_edge(i + 1, v); } } int depth(int v) const { return dep[v]; } int parent(int v) const { if (v == root) return -1; return g[v].back(); } int degree(int v) const { return g[v].size(); } int subtree_size(int v) const { return sub[v]; } // if d > dep[v], return -1 int la(int v, int d) const { while (v != -1){ int u = nxt[v]; if (down[v] - d >= down[u]){ v = tour[down[v] - d]; break; } d -= down[v] - down[u] + 1; v = parent(u); } return v; } int lca(int u, int v) const { while (nxt[u] != nxt[v]){ if (down[u] < down[v]) swap(u,v); u = parent(nxt[u]); } return dep[u] < dep[v] ? u : v; } int dist(int u, int v) const { return dep[u] + dep[v] - 2*dep[lca(u,v)]; } // if d > dist(from, to), return -1 int jump(int from, int to, int d) const { int l = lca(from,to); if (d <= dep[from] - dep[l]){ return la(from, d); } d -= dep[from] - dep[l]; if (d <= dep[to] - dep[l]){ return la(to, dep[to] - dep[l] - d); } return -1; } // seg.set(index(v), X[v]); int index(int vertex) const { return down[vertex]; } int index_from_edge(int u, int v) const { return (dep[u] < dep[v] ? down[v] : down[u]); } // X[vertex(i)] = seg.get(i); int vertex(int index) const { return tour[index]; } int subtree_l(int v) const { return down[v]; } int subtree_r(int v) const { return down[v] + sub[v]; } // if r == v, return true bool is_in_subtree(int r, int v) const { return subtree_l(r) <= subtree_l(v) && subtree_l(v) < subtree_r(r); } bool is_in_path(int lv, int mv, int rv) const { return dist(lv,mv) + dist(mv,rv) == dist(lv,rv); } // dist, v1, v2 tuple diameter(){ int v1 = max_element(dep.begin(),dep.end()) - dep.begin(); vector dist_from_v1(n,numeric_limits::max()); queue que; que.push(v1); dist_from_v1[v1] = 0; while (!que.empty()){ int v = que.front(); que.pop(); for (int u : g[v]){ if (dist_from_v1[u] > dist_from_v1[v]+1){ dist_from_v1[u] = dist_from_v1[v]+1; que.push(u); } } } int v2 = max_element(dist_from_v1.begin(),dist_from_v1.end()) - dist_from_v1.begin(); return make_tuple(dist_from_v1[v2],v1,v2); } // vertex array : vector {from, v1, v2, ... , to} vector path(int from, int to){ int l = lca(from,to); const int sizf = dep[from]-dep[l], sizt = dep[to]-dep[l]; vector pf = {from}, pt; pf.reserve(sizf+1); pt.reserve(sizt); for (int i = 0; i < sizf; i++){ from = parent(from); pf.push_back(from); } for (int i = 0; i < sizt; i++){ pt.push_back(to); to = parent(to); } pf.insert(pf.end(),pt.rbegin(),pt.rend()); return pf; } template void path_query(int u, int v, bool vertex, const F &f){ int l = lca(u,v); for (auto [s, t] : ascend(u, l)){ f(t, s + 1); } if (vertex) f(down[l], down[l] + 1); for (auto [s, t] : descend(l, v)){ f(s, t + 1); } } template void path_noncommutative_query(int u, int v, bool vertex, const F &f){ int l = lca(u,v); for (auto [s, t] : ascend(u, l)){ f(s + 1, t); // l > r ok } if (vertex) f(down[l],down[l] + 1); for (auto [s, t] : descend(l, v)){ f(s, t + 1); // l > r ok } } template void subtree_query(int v, bool vertex, const F &f){ f(down[v] + (vertex ? 0 : 1), down[v] + sub[v]); } // adjacent to v const auto operator[](int v) const { return g[v]; } auto operator[](int v){ return g[v]; } // only child const auto operator()(int v) const { return g(v, 0, degree(v) - (v == root ? 0 : 1)); } auto operator()(int v){ return g(v, 0, degree(v) - (v == root ? 0 : 1)); } private: int n, root; vector dep, sub, down, tour, nxt; // v is ancestor of u. // enumerate [closed] intervals of down ( interval [l, r] may hold l > r ). vector> ascend(int u, int v){ vector> res; while (nxt[u] != nxt[v]){ res.emplace_back(down[u], down[nxt[u]]); u = parent(nxt[u]); } if (u != v) res.emplace_back(down[u], down[v]+1); return res; } // u is ancestor of v. // enumerate [closed] intervals of down ( interval [l, r] may hold l > r ). vector> descend(int u, int v){ if (u == v) return {}; if (nxt[u] == nxt[v]){ return {pair(down[u]+1, down[v])}; } vector> res = descend(u, parent(nxt[v])); res.emplace_back(down[nxt[v]], down[v]); return res; } void build(){ g.build(); init_sz(); init_hld(); } /* setup dep, sub if v is not root, g[v].back() is parent of v. if v is not leaf (i.e. v has child), g[v].front() is heavy child of v. */ void init_sz(){ dep.resize(n, 0); sub.resize(n, 1); auto dfs = [&](auto sfs, int v, int f) -> void { for (int &u : g[v]){ // only one chance to take parent as u. if (u == f) swap(g[v].back(), u); // twice means u is the last element of g[v], i.e. parent of v. if (u == f) break; dep[u] = dep[v]+1; sfs(sfs, u, v); sub[v] += sub[u]; if (sub[g[v].front()] < sub[u]){ swap(g[v].front(), u); } } }; dfs(dfs, root, -1); } /* setup down, tour, nxt only heavy child c of v, nxt[c] = nxt[v]. for other child c, nxt[c] = c. */ void init_hld(){ down.resize(n); tour.resize(n); nxt.resize(n); nxt[root] = root; int clock = 0; auto dfs = [&](auto sfs, int v) -> void { down[v] = clock++; tour[down[v]] = v; // in case of no child, nothing to do if ((*this)(v).empty()) return ; // heavy child nxt[(*this)(v).front()] = nxt[v]; sfs(sfs, (*this)(v).front()); // other child for (int u : (*this)(v).next()){ nxt[u] = u; sfs(sfs, u); } }; dfs(dfs, root); } public: struct compressed_tree : public simple_tree { using simple_tree::simple_tree; using simple_tree::operator=; hld_tree &g; compressed_tree (hld_tree &g_, vector vs) : g(g_){ auto comp = [&](int lv, int rv){ return g.index(lv) < g.index(rv); }; sort(vs.begin(),vs.end(),comp); int sz = vs.size(); for (int i = 0; i < sz-1; i++){ vs.emplace_back(g.lca(vs[i],vs[i+1])); } sort(vs.begin(),vs.end(),comp); vs.erase(unique(vs.begin(),vs.end()),vs.end()); sz = vs.size(); (*this) = simple_tree(sz); real_vertex = vs; for (int i = 0; i < sz; i++){ g.virtual_vertex[real_vertex[i]] = i; } stack st; st.push(0); for (int i = 1; i < sz; i++){ while (!g.is_in_subtree(real_vertex[st.top()], real_vertex[i])) st.pop(); (*this).add_edge(st.top(),i); st.push(i); } } vector real_vertex; int real_v(int virtual_v) const { return real_vertex[virtual_v]; } int virtual_v(int real_v) const { return g.virtual_vertex[real_v]; } size_t size() const { return real_vertex.size(); } }; compressed_tree compressed_tree_gen(const vector &vs){ if ((int)virtual_vertex.size() != n) virtual_vertex.resize(n); return compressed_tree(*this, vs); } vector virtual_vertex; }; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/misc/random_tree.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/misc/random_tree.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/misc/rng.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/misc/rng.hpp" namespace noya2 { // [0, 2^64 - 1) ull rng() { static ull _x = 88172645463325252UL; return _x ^= _x << 7, _x ^= _x >> 9; } // [l, r] ll rng(ll l, ll r) { assert(l <= r); return l + rng() % ull(r - l + 1); } // [l, r) ll randint(ll l, ll r) { assert(l < r); return l + rng() % ull(r - l); } // [0.0, 1.0) ld rnd() { return rng() * 5.42101086242752217004e-20; } // [l, r) ld rnd(ld l, ld r) { assert(l < r); return l + rnd() * (r - l); } } // namespace noya2 #line 6 "/Users/noya2/Desktop/Noya2_library/misc/random_tree.hpp" namespace noya2 { // input: [c \in [0, n)] * (n-2), n >= 3 vector> pruefer_code(const vector& code) { int n = code.size() + 2; assert(n > 2); vector> g(n); vector deg(n, 1); int e = 0; for (auto& x : code) deg[x]++; set ps; for (int j = 0; j < n; j++) { if (deg[j] == 1) ps.insert(j); } for (auto& i : code) { if (ps.empty()) break; int j = *begin(ps); ps.erase(j); g[i].push_back(j); g[j].push_back(i); if (deg[i] == 1) ps.erase(i); deg[i]--, deg[j]--; if (deg[i] == 1) ps.insert(i); e++; } int u = -1, v = -1; for (int i = 0; i < n; i++) { if (deg[i] == 1) (u == -1 ? u : v) = i; } assert(u != -1 and v != -1); g[u].push_back(v); g[v].push_back(u); e++; assert(e == n - 1); return g; } vector> random_tree(int n) { if (n <= 2) { vector> g(n); if (n == 2) { g[0].push_back(1); g[1].push_back(0); } return g; } vector pruefer(n - 2); for (auto& x : pruefer) x = randint(0,n); return pruefer_code(pruefer); } } // namespace noya2 #line 5 "hld_test.cpp" #line 2 "hld_new.hpp" #line 10 "hld_new.hpp" namespace hld_new { struct hld_tree { int n, root; std::vector down, nxt, sub, tour; noya2::internal::csr adjacent; // default constructor (nop) hld_tree () {} // tree with _n node // after construct, call input_edges / input_parents / add_edge _n - 1 times hld_tree (int _n, int _root = 0) : n(_n), root(_root), down(n), nxt(n), sub(n, 1), tour(n) { if (n == 1){ nxt[0] = -1; down[0] = -1; build_from_parents(); } } // par[i] < i, par[0] == -1 hld_tree (const std::vector &par) : n(par.size()), root(0), down(n, -1), nxt(par), sub(n, 1), tour(n){ build_from_parents(); } // par[i] < i, par[0] == -1 hld_tree (std::vector &&par) : n(par.size()), root(0), down(n, -1), sub(n, 1), tour(n) { nxt.swap(par); build_from_parents(); } // distinct unweighted undirected n - 1 edges of tree hld_tree (const std::vector> &es, int _root = 0) : n(es.size() + 1), root(_root), down(n), nxt(n), sub(n, 1), tour(n) { for (auto &[u, v] : es){ down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; } build_from_edges(); } // input parents from cin template void input_parents(){ // using std::cin; nxt[0] = -1; for (int u = 1; u < n; u++){ cin >> nxt[u]; nxt[u] -= indexed; } build_from_parents(); } // input n - 1 edges from cin template void input_edges(){ // using std::cin; for (int i = 1; i < n; i++){ int u, v; cin >> u >> v; u -= indexed; v -= indexed; down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; } build_from_edges(); } void add_edge(int u, int v){ down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; // use tour[0] as counter if (++tour[0] == n - 1){ build_from_edges(); } } // top vertex of heavy path which contains v int leader(int v) const { return nxt[v] < 0 ? v : nxt[v]; } // level ancestor // ret is ancestor of v, dist(ret, v) == d // if d > depth(v), return -1 int la(int v, int d) const { while (v != -1){ int u = leader(v); if (down[v] - d >= down[u]){ v = tour[down[v] - d]; break; } d -= down[v] - down[u] + 1; v = (u == root ? -1 : ~nxt[u]); } return v; } // lowest common ancestor of u and v int lca(int u, int v) const { int du = down[u], dv = down[v]; if (du > dv){ std::swap(du, dv); std::swap(u, v); } if (dv < du + sub[u]){ return u; } while (du < dv){ v = ~nxt[leader(v)]; dv = down[v]; } return v; } // distance from u to v int dist(int u, int v) const { int _dist = 0; while (leader(u) != leader(v)){ if (down[u] > down[v]) std::swap(u, v); _dist += down[v] - down[leader(v)] + 1; v = ~nxt[leader(v)]; } _dist += std::abs(down[u] - down[v]); return _dist; } // d times move from to its neighbor (direction of to) // if d > dist(from, to), return -1 int jump(int from, int to, int d) const { int _from = from, _to = to; int dist_from_lca = 0, dist_to_lca = 0; while (leader(_from) != leader(_to)){ if (down[_from] > down[_to]){ dist_from_lca += down[_from] - down[leader(_from)] + 1; _from = ~nxt[leader(_from)]; } else { dist_to_lca += down[_to] - down[leader(_to)] + 1; _to = ~nxt[leader(_to)]; } } if (down[_from] > down[_to]){ dist_from_lca += down[_from] - down[_to]; } else { dist_to_lca += down[_to] - down[_from]; } if (d <= dist_from_lca){ return la(from, d); } d -= dist_from_lca; if (d <= dist_to_lca){ return la(to, dist_to_lca - d); } return -1; } // parent of v (if v is root, return -1) int parent(int v) const { if (v == root) return -1; return (nxt[v] < 0 ? ~nxt[v] : tour[down[v] - 1]); } // visiting time in euler tour // usage : seg.set(index(v), X[v]) int index(int vertex) const { return down[vertex]; } // subtree size of v int subtree_size(int v) const { return sub[v]; } // prod in subtree v : seg.prod(subtree_l(v), subtree_r(v)) int subtree_l(int v) const { return down[v]; } int subtree_r(int v) const { return down[v] + sub[v]; } // v is in subtree r bool is_in_subtree(int r, int v) const { return subtree_l(r) <= subtree_l(v) && subtree_r(v) <= subtree_r(r); } // distance table from s std::vector dist_table(int s) const { std::vector table(n, -1); table[s] = 0; while (s != root){ table[parent(s)] = table[s] + 1; s = parent(s); } for (int v : tour){ if (table[v] == -1){ table[v] = table[parent(v)] + 1; } } return table; } // dist, v1, v2 std::tuple diameter() const { std::vector dep = dist_table(root); int v1 = std::ranges::max_element(dep) - dep.begin(); std::vector fromv1 = dist_table(v1); int v2 = std::ranges::max_element(fromv1) - fromv1.begin(); return {fromv1[v2], v1, v2}; } // vertex array {from, ..., to} std::vector path(int from, int to) const { int d = dist(from, to); std::vector _path(d + 1); int front = 0, back = d; while (from != to){ if (down[from] > down[to]){ _path[front++] = from; from = parent(from); } else { _path[back--] = to; to = parent(to); } } _path[front] = from; return _path; } // path decomposition and query (vertex weighted) // if l < r, decsending order tour[l, r) // if l > r, acsending order tour(l, r] void path_query(int u, int v, auto f) const { while (leader(u) != leader(v)){ if (down[u] < down[v]){ f(down[leader(v)], down[v] + 1); v = ~nxt[leader(v)]; } else { f(down[u] + 1, down[leader(u)]); u = ~nxt[leader(u)]; } } if (down[u] < down[v]){ f(down[u], down[v] + 1); } else { f(down[u] + 1, down[v]); } } // {parent, mapping} : cptree i is correspond to tree mapping[i]. parent[i] is parent of i in cptree. // parent[i] < i, parent[0] == -1 std::pair, std::vector> compressed_tree(std::vector vs) const { if (vs.empty()){ return {{},{}}; } auto comp = [&](int l, int r){ return down[l] < down[r]; }; std::ranges::sort(vs, comp); int sz = vs.size(); vs.reserve(2*sz); for (int i = 0; i < sz-1; i++){ vs.emplace_back(lca(vs[i], vs[i+1])); } std::sort(vs.begin() + sz, vs.end(), comp); std::ranges::inplace_merge(vs, vs.begin() + sz, comp); auto del = std::ranges::unique(vs); vs.erase(del.begin(), del.end()); sz = vs.size(); std::stack st; std::vector par(sz); par[0] = -1; st.push(0); for (int i = 1; i < sz; i++){ while (!is_in_subtree(vs[st.top()], vs[i])) st.pop(); par[i] = st.top(); st.push(i); } return {par, vs}; } // build csr for using operator[], operator() void build_csr(){ adjacent = noya2::internal::csr(n, n - 1); for (int v = 0; v < n; v++){ if (v == root) continue; adjacent.add(parent(v), v); } adjacent.build(); } const auto operator[](int v) const { return adjacent[v]; } auto operator[](int v){ return adjacent[v]; } // nxt[v] : parent of v, nxt[0] == -1 void build_from_parents(){ for (int u = n - 1; u >= 1; u--){ int v = nxt[u]; sub[v] += sub[u]; down[v] = std::max(down[v], sub[u]); } for (int u = n - 1; u >= 1; u--){ int v = nxt[u]; if (down[v] == sub[u]){ sub[u] = ~sub[u]; down[v] = ~down[v]; } } sub[0] = ~down[0] + 1; down[0] = 0; for (int u = 1; u < n; u++){ int v = nxt[u]; int nsub = ~down[u] + 1; if (sub[u] < 0){ down[u] = down[v] + 1; nxt[u] = (nxt[v] < 0 ? v : nxt[v]); } else { down[u] = down[v] + sub[v]; sub[v] += sub[u]; nxt[u] = ~v; } sub[u] = nsub; } for (int u = 0; u < n; u++){ tour[down[u]] = u; } } // down[v] : degree of v // nxt[v] : xor prod of neighbor of v void build_from_edges(){ // use tour as queue int back = 0; for (int u = 0; u < n; u++){ if (u != root && down[u] == 1){ tour[back++] = u; } } for (int front = 0; front < n - 1; front++){ int u = tour[front]; down[u] = -1; int v = nxt[u]; // parent of v nxt[v] ^= u; if (--down[v] == 1 && v != root){ tour[back++] = v; } } // check : now, tour is reverse of topological order tour.pop_back(); // check : now, down[*] <= 1 for (int u : tour){ int v = nxt[u]; // subtree size (initialized (1,1,...,1)) sub[v] += sub[u]; // heaviest subtree of its child down[v] = std::max(down[v], sub[u]); } for (int u : tour){ int v = nxt[u]; // whether u is not the top of heavy path if (down[v] == sub[u]){ sub[u] = ~sub[u]; down[v] = ~down[v]; } } // after appearing v as u (or v == root), // down[v] is the visiting time of euler tour // nxt[v] is the lowest vertex of heavy path which contains v // (if v itself, nxt[v] is ~(parent of v)) // sub[v] + down[v] is the light child's starting time of euler tour // note : heavy child's visiting time of euler tour is (the time of its parent) + 1 sub[root] = ~down[root] + 1; down[root] = 0; nxt[root] = -1; for (int u : tour | std::views::reverse){ int v = nxt[u]; int nsub = ~down[u] + 1; // heavy child if (sub[u] < 0){ down[u] = down[v] + 1; nxt[u] = (nxt[v] < 0 ? v : nxt[v]); } // light child else { down[u] = down[v] + sub[v]; sub[v] += sub[u]; nxt[u] = ~v; } sub[u] = nsub; } // tour is inverse permutation of down tour.push_back(0); for (int u = 0; u < n; u++){ tour[down[u]] = u; } } }; } // namespace hld_new #line 7 "hld_test.cpp" void jikken1(int n){ auto g = random_tree(n); int root = randint(0,n); noya2::hld_tree tr1(n,root); hld_new::hld_tree tr2(n,root); rep(i,n){ for (int j : g[i]){ if (i < j){ tr1.add_edge(i, j); tr2.add_edge(i, j); } } } // subtree size rep(i,n){ assert(tr1.subtree_size(i) == tr2.subtree_size(i)); } cout << "subtree ok" << endl; // parent rep(i,n){ assert(tr1.parent(i) == tr2.parent(i)); } cout << "parent ok" << endl; // diameter { assert(get<0>(tr1.diameter()) == get<0>(tr2.diameter())); } cout << "diameter ok" << endl; // lca rep(i,n) rep(j,n){ assert(tr1.lca(i,j) == tr2.lca(i,j)); } cout << "lca ok" << endl; // la rep(i,n) rep(j,n){ assert(tr1.la(i,j) == tr2.la(i,j)); } cout << "la ok" << endl; // path rep(i,n) rep(j,n){ assert(tr1.path(i,j) == tr2.path(i,j)); } cout << "path ok" << endl; // dist rep(i,n) rep(j,n){ assert(tr1.dist(i,j) == tr2.dist(i,j)); } cout << "dist ok" << endl; } void jikken2(){ int n; in(n); int t; in(t); while (t--){ jikken1(n); } cout << "jikken2 done" << endl; } void jikken3(int n){ auto g = random_tree(n); vector par = [&]{ vector ret(n); noya2::hld_tree tr(n); rep(i,n) for (int j : g[i]){ if (i < j){ tr.add_edge(i, j); } } ret[0] = -1; repp(i,1,n){ ret[tr.index(i)] = tr.index(tr.parent(i)); } return ret; }(); noya2::hld_tree tr1(n); hld_new::hld_tree tr2(par); repp(i,1,n){ tr1.add_edge(i, par[i]); } // subtree size rep(i,n){ assert(tr1.subtree_size(i) == tr2.subtree_size(i)); } cout << "subtree ok" << endl; // parent rep(i,n){ assert(tr1.parent(i) == tr2.parent(i)); } cout << "parent ok" << endl; // diameter { assert(get<0>(tr1.diameter()) == get<0>(tr2.diameter())); } cout << "diameter ok" << endl; // lca rep(i,n) rep(j,n){ assert(tr1.lca(i,j) == tr2.lca(i,j)); } cout << "lca ok" << endl; // la rep(i,n) rep(j,n){ assert(tr1.la(i,j) == tr2.la(i,j)); } cout << "la ok" << endl; // path rep(i,n) rep(j,n){ assert(tr1.path(i,j) == tr2.path(i,j)); } cout << "path ok" << endl; // dist rep(i,n) rep(j,n){ assert(tr1.dist(i,j) == tr2.dist(i,j)); } cout << "dist ok" << endl; } void jikken4(){ int n; in(n); int t; in(t); while (t--){ jikken3(n); } cout << "jikken4 done" << endl; } #line 2 "/Users/noya2/Desktop/Noya2_library/misc/timer.hpp" #line 5 "/Users/noya2/Desktop/Noya2_library/misc/timer.hpp" namespace noya2{ struct Timer { private: std::chrono::high_resolution_clock::time_point start, end; public: Timer() { set(); } void set() { start = std::chrono::high_resolution_clock::now(); } int time() { end = std::chrono::high_resolution_clock::now(); return std::chrono::duration_cast(end - start).count(); } double dtime(){ return (double)(time()) / 1000; } bool before(double T) { return time() < (int)(T * 1000); } void print() { std::cerr << "elapsed time: " << (double)time() / 1000 << " sec" << std::endl; } }; } // namespace noya2 #line 135 "hld_test.cpp" void jikken5(int n){ auto g = random_tree(n); vector es; es.reserve(n-1); rep(i,n) for (int j : g[i]){ if (i < j){ es.emplace_back(i, j); } } vector a(n); rep(i,n){ a[i] = {randint(0,n),randint(0,n)}; } Timer tm; tm.set(); noya2::hld_tree tr1(n); for (auto [u, v] : es){ tr1.add_edge(u, v); } tm.print(); tm.set(); int val = 0; for (auto [u, v] : a){ val ^= tr1.lca(u, v); } tm.print(); tm.set(); hld_new::hld_tree tr2(n); for (auto [u, v] : es){ tr2.add_edge(u, v); } tm.print(); tm.set(); for (auto [u, v] : a){ val ^= tr2.lca(u, v); } tm.print(); assert(val == 0); } void jikken6(){ int n; in(n); int t; in(t); while (t--){ jikken5(n); } } void jikken7(int n){ auto g = random_tree(n); vector par = [&]{ vector ret(n); noya2::hld_tree tr(n); rep(i,n) for (int j : g[i]){ if (i < j){ tr.add_edge(i, j); } } ret[0] = -1; repp(i,1,n){ ret[tr.index(i)] = tr.index(tr.parent(i)); } return ret; }(); vector a(n); rep(i,n){ a[i] = {randint(0,n),randint(0,n)}; } Timer tm; tm.set(); noya2::hld_tree tr1(n); repp(i,1,n){ tr1.add_edge(i, par[i]); } tm.print(); tm.set(); int val = 0; for (auto [u, v] : a){ val ^= tr1.dist(u, v); } tm.print(); tm.set(); hld_new::hld_tree tr2(par); tm.print(); tm.set(); for (auto [u, v] : a){ val ^= tr2.dist(u, v); } tm.print(); assert(val == 0); } void jikken8(){ int n; in(n); int t; in(t); while (t--){ jikken7(n); } } #line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/dsu.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/data_structure/dsu.hpp" namespace noya2{ struct dsu { public: dsu() : _n(0) {} dsu(int n) : _n(n), parent_or_size(n, -1) {} int merge(int a, int b) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); int x = leader(a), y = leader(b); if (x == y) return x; if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y); parent_or_size[x] += parent_or_size[y]; parent_or_size[y] = x; return x; } bool same(int a, int b) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); return leader(a) == leader(b); } int leader(int a) { assert(0 <= a && a < _n); if (parent_or_size[a] < 0) return a; return parent_or_size[a] = leader(parent_or_size[a]); } int size(int a) { assert(0 <= a && a < _n); return -parent_or_size[leader(a)]; } std::vector> groups() { std::vector leader_buf(_n), group_size(_n); for (int i = 0; i < _n; i++) { leader_buf[i] = leader(i); group_size[leader_buf[i]]++; } std::vector> result(_n); for (int i = 0; i < _n; i++) { result[i].reserve(group_size[i]); } for (int i = 0; i < _n; i++) { result[leader_buf[i]].push_back(i); } result.erase( std::remove_if(result.begin(), result.end(), [&](const std::vector& v) { return v.empty(); }), result.end()); return result; } private: int _n; // root node: -1 * component size // otherwise: parent std::vector parent_or_size; }; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/fenwick_tree.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/data_structure/fenwick_tree.hpp" namespace noya2{ template struct fenwick_tree { public: fenwick_tree() : _n(0) {} explicit fenwick_tree(int n_) : _n(n_), data(n_) {} void add(int p, T x) { assert(0 <= p && p < _n); p++; while (p <= _n) { data[p - 1] += x; p += p & -p; } } T sum(int l, int r) { assert(0 <= l && l <= r && r <= _n); return sum(r) - sum(l); } private: int _n; vector data; T sum(int r) { T s = 0; while (r > 0) { s += data[r - 1]; r -= r & -r; } return s; } }; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" namespace noya2 { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime_flag = is_prime_constexpr(n); constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root_flag = primitive_root_constexpr(m); // constexpr long long primitive_root_constexpr(long long m){ // if (m == (1LL << 47) - (1LL << 24) + 1) return 3; // return primitive_root_constexpr(static_cast(m)); // } } // namespace noya2 #line 6 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" namespace noya2{ struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; unsigned long long x = (unsigned long long)((__uint128_t(z) * im) >> 64); unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; template struct static_modint { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template constexpr static_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template constexpr static_modint(T v){ _v = (unsigned int)(v % umod()); } constexpr unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } constexpr mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (uint)(z % umod()); return *this; } constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } constexpr mint operator+() const { return *this; } constexpr mint operator-() const { return mint() - *this; } constexpr mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend constexpr mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend constexpr mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend constexpr mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend constexpr mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend constexpr bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend constexpr bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = is_prime_flag; }; template struct dynamic_modint { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template dynamic_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template dynamic_modint(T v){ _v = (unsigned int)(v % umod()); } uint val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = noya2::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static barrett bt; static unsigned int umod() { return bt.umod(); } }; template noya2::barrett dynamic_modint::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; template concept Modint = requires (T &a){ T::mod(); a.inv(); a.val(); a.pow(declval()); }; } // namespace noya2 #line 238 "hld_test.cpp" using mint = modint998244353; void jikken9(){ int n, m; in(n,m); vector> to(n); rep(i,m){ int u, v; in(u,v); u--, v--; to[v].emplace_back(u); } dsu d(n); vector top(n); iota(all(top),0); hld_new::hld_tree g(n,n-1); rep(v,n){ for (int u : to[v]){ if (d.same(u,v)) continue; g.add_edge(top[d.leader(u)],v); top[d.merge(u,v)] = v; } } fenwick_tree fen(n); mint ans = 0; rep(v,n){ auto [par, mapping] = g.compressed_tree(to[v]); mint dp = 1; if (!par.empty()){ dp += fen.sum(g.index(mapping[0]),g.index(mapping[0])+1); } repp(i,1,par.size()){ g.path_query(mapping[i],g.jump(mapping[par[i]],mapping[i],1),[&](int l, int r){ if (l > r) swap(l,r); dp += fen.sum(l,r); }); } fen.add(g.index(v),dp); // out(v,dp); ans += dp; } out(ans); } void solve(){ // jikken2(); // jikken4(); // jikken6(); // jikken8(); jikken9(); } int main(){ std::cin.tie(0)->sync_with_stdio(0); int t = 1; //in(t); while (t--) { solve(); } }