#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using Int = long long; template ostream &operator<<(ostream &os, const pair &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template ostream &operator<<(ostream &os, const vector &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; } template void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } #define COLOR(s) ("\x1b[" s "m") //////////////////////////////////////////////////////////////////////////////// // SA-IS // String: string, vector, vector // if sigma <= n, O(n) time, O(n) space // if sigma > n, O(n log n) time, O(n) space template vector suffixArrayRec(const String &as) { const int n = as.size(); if (n == 0) return {}; const auto minmaxA = minmax_element(as.begin(), as.end()); const auto minA = *minmaxA.first, maxA = *minmaxA.second; if (static_cast(maxA) - minA >= static_cast(n)) { vector us(n); for (int u = 0; u < n; ++u) us[u] = u; std::sort(us.begin(), us.end(), [&](int u, int v) -> bool { return (as[u] < as[v]); }); int b = 0; vector bs(n, 0); for (int i = 1; i < n; ++i) { if (as[us[i - 1]] != as[us[i]]) ++b; bs[us[i]] = b; } return suffixArrayRec(bs); } const int sigma = maxA - minA + 1; vector pt(sigma + 1, 0), poss(sigma); for (int u = 0; u < n; ++u) ++pt[as[u] - minA + 1]; for (int a = 0; a < sigma; ++a) pt[a + 1] += pt[a]; // cmp[u] := (as[u, n) < as[u + 1, n)) vector cmp(n); cmp[n - 1] = false; for (int u = n - 1; --u >= 0; ) { cmp[u] = (as[u] != as[u + 1]) ? (as[u] < as[u + 1]) : cmp[u + 1]; } // ><, nn - id (0 <= id < n) int nn = 0; vector ids(n, 0); int last = n; vector nxt(n, 0); // put ><, from the tail of each bucket vector us(n, 0); memcpy(poss.data(), pt.data() + 1, sigma * sizeof(int)); for (int u = n - 1; --u >= 1; ) if (!cmp[u - 1] && cmp[u]) { ids[u] = ++nn; nxt[u] = last; last = u; us[--poss[as[u] - minA]] = u; } // follow > backwards, from the head of each bucket memcpy(poss.data(), pt.data(), sigma * sizeof(int)); us[poss[as[n - 1] - minA]++] = n - 1; for (int i = 0; i < n; ++i) { const int u = us[i]; if (u && !cmp[u - 1]) us[poss[as[u - 1] - minA]++] = u - 1; } // follow < backwards, from the tail of each bucket memcpy(poss.data(), pt.data() + 1, sigma * sizeof(int)); for (int i = n; --i >= 0; ) { const int u = us[i]; if (u && cmp[u - 1]) us[--poss[as[u - 1] - minA]] = u - 1; } if (nn) { int vsLen = 0; vector vs(nn); for (const int u : us) if (ids[u]) vs[vsLen++] = u; int b = 0; vector bs(nn, 0); for (int j = 1; j < nn; ++j) { // as[v1, w1] (< or =) as[v0, w0] int v1 = vs[j - 1], v0 = vs[j]; const int w1 = nxt[v1], w0 = nxt[v0]; if (w1 - v1 != w0 - v0) { ++b; } else { for (; ; ++v1, ++v0) { if (v1 == n) { ++b; break; } if (as[v1] != as[v0]) { ++b; break; } if (v1 == w1) break; } } bs[nn - ids[vs[j]]] = b; } for (int u = 0; u < n; ++u) if (ids[u]) vs[nn - ids[u]] = u; const auto sub = suffixArrayRec(bs); // put ><, from the tail of each bucket memset(us.data(), 0, n * sizeof(int)); memcpy(poss.data(), pt.data() + 1, sigma * sizeof(int)); for (int j = nn; --j >= 0; ) { const int u = vs[sub[j]]; us[--poss[as[u] - minA]] = u; } // follow > backwards, from the head of each bucket memcpy(poss.data(), pt.data(), sigma * sizeof(int)); us[poss[as[n - 1] - minA]++] = n - 1; for (int i = 0; i < n; ++i) { const int u = us[i]; if (u && !cmp[u - 1]) us[poss[as[u - 1] - minA]++] = u - 1; } // follow < backwards, from the tail of each bucket memcpy(poss.data(), pt.data() + 1, sigma * sizeof(int)); for (int i = n; --i >= 0; ) { const int u = us[i]; if (u && cmp[u - 1]) us[--poss[as[u - 1] - minA]] = u - 1; } } return us; } // us[i]: i-th suffix // su[u]: index of as[u, n) // hs[i]: longest common prefix of as[us[i - 1], n) and as[us[i], n) struct SuffixArray { int n; bool rmq; vector us, su, hs; SuffixArray() : n(0), rmq(false) {} SuffixArray(const string &as, bool rmq_) : rmq(rmq_) { build(as); } SuffixArray(const vector &as, bool rmq_) : rmq(rmq_) { build(as); } SuffixArray(const vector &as, bool rmq_) : rmq(rmq_) { build(as); } template void build(const String &as) { n = as.size(); us = suffixArrayRec(as); su.resize(n + 1); for (int i = 0; i < n; ++i) su[us[i]] = i; su[n] = -1; hs.assign(n, 0); for (int h = 0, u = 0; u < n; ++u) if (su[u]) { for (int v = us[su[u] - 1]; v + h < n && as[v + h] == as[u + h]; ++h) {} hs[su[u]] = h; if (h) --h; } if (rmq) { const int logN = n ? (31 - __builtin_clz(n)) : 0; hs.resize((logN + 1) * n - (1 << logN) + 1); for (int e = 0; e < logN; ++e) { int *hes = hs.data() + e * n; for (int i = 0; i <= n - (1 << (e + 1)); ++i) { hes[n + i] = min(hes[i], hes[i + (1 << e)]); } } } } // Returns longest common prefix of as[u, n) and as[v, n). // 0 <= u, v <= n // Assumes rmq. inline int lcp(int u, int v) const { if (u == v) return n - u; int i = su[u], j = su[v]; if (i > j) swap(i, j); const int e = 31 - __builtin_clz(j - i); return min(hs[e * n + i + 1], hs[e * n + j + 1 - (1 << e)]); } }; //////////////////////////////////////////////////////////////////////////////// // https://codeforces.com/blog/entry/106725 // Lyndon // * smaller than non-trivial suffix // * smaller than other cyclic shift // Lyndon factorization (Lyndon factors in non-incr. order): // * longest Lyndon prefix greedily // * min suffix greedily (removing min suffix does not change the suffix order) // pqs[v] = (p, q): Lyndon factorization of as[0, v) ends with a[v - p, v)^q // String: string, vector, vector // O(n) time // // min_u as[u, v) bs: // for (int u = v; ; ) { // // candidate u // if (v == 0) break; // const int p = pqs[u].first, q = pqs[u].second; // const int uu = u - q * p; // if (!(p >= v - u && sa.lcp(uu, u) >= v - u)) break; // // (v - u) is at least doubled // u = uu; // } // } template vector> lyndonSuffix(const String &as) { const int n = as.size(); vector> pqs(n + 1); pqs[0] = make_pair(0, 0); for (int u = 0; u < n; ) { for (int p = 1, q = 1, r = 0, v = u + 1; ; ++v) { // as[u, v) = as[u, u + p)^q as[u, u + r) // as[u, u + p): Lyndon pqs[v] = (r != 0) ? pqs[u + r] : make_pair(p, q); if (v == n || as[v - p] > as[v]) { u = v - r; break; } else if (as[v - p] < as[v]) { p = v + 1 - u; q = 1; r = 0; } else { if (++r == p) { ++q; r = 0; } } } } return pqs; } // as[u, vs[u]): longest Lyndon prefix of as[u, n) // String: string, vector, vector // O(n) time template vector lyndonPrefix(const String &as, const SuffixArray &sa) { const int n = as.size(); // top: larger suffix int stackLen = 0; vector stack(n + 1); vector vs(n); for (int u = 0; u <= n; ++u) { for (; stackLen > 0 && sa.su[stack[stackLen - 1]] > sa.su[u]; --stackLen) { vs[stack[stackLen - 1]] = u; } stack[stackLen++] = u; } return vs; } template vector lyndonPrefix(const String &as) { return lyndonPrefix(as, SuffixArray(as, /*rmq=*/false)); } // lyndonPrefix for invert(as), using suffix array of as template vector lyndonPrefixInverted(const String &as, const SuffixArray &sa) { assert(sa.rmq); const int n = as.size(); // top: larger suffix int stackLen = 0; vector stack(n + 1); vector vs(n); for (int u = 0; u <= n; ++u) { for (; stackLen > 0; --stackLen) { const int uu = stack[stackLen - 1]; const int l = sa.lcp(uu, u); if (u + l < n && as[uu + l] > as[u + l]) break; vs[uu] = u; } stack[stackLen++] = u; } return vs; } // (p, [u, v)): run <=> // * p: min period of as[u, v) // * v - u >= 2 p // * [u, v): maximal // \sum 1 <= n // \sum (v - u) / p <= 3 n // \sum (v - u - 2 p + 1) \in O(n log n) (TODO: proof) // Returns runs (p, [u, v)) in lex. order. // String: string, vector, vector // O(n log n) time, (<= 6 n + 2) SuffixArray::lcp calls template vector>> repetitions(const String &as, const SuffixArray &sa) { assert(sa.rmq); const int n = as.size(); if (n == 0) return {}; String asRev = as; std::reverse(asRev.begin(), asRev.end()); const SuffixArray saRev(asRev, /*rmq=*/true); const vector vs = lyndonPrefix(as, sa); const vector vsInverted = lyndonPrefixInverted(as, sa); vector>> runs; for (int u = 0; u < n; ++u) { // from longest lyndon prefix of as[u, n) or invert(as)[u, n) { const int v = vs[u]; const int p = v - u, uu = u - saRev.lcp(n - u, n - v), vv = v + sa.lcp(u, v); if (vv - uu >= 2 * p) runs.emplace_back(p, make_pair(uu, vv)); } if (vs[u] != vsInverted[u]) { const int v = vsInverted[u]; const int p = v - u, uu = u - saRev.lcp(n - u, n - v), vv = v + sa.lcp(u, v); if (vv - uu >= 2 * p) runs.emplace_back(p, make_pair(uu, vv)); } } // radix sort const int runsLen = runs.size(); auto runsWork = runs; vector pt(n + 1, 0); for (int i = 0; i < runsLen; ++i) ++pt[runs[i].second.first]; for (int u = 0; u < n - 1; ++u) pt[u + 1] += pt[u]; for (int i = runsLen; --i >= 0; ) runsWork[--pt[runs[i].second.first]] = runs[i]; memset(pt.data() + 1, 0, n * sizeof(int)); for (int i = 0; i < runsLen; ++i) ++pt[runsWork[i].first]; for (int p = 1; p < n; ++p) pt[p + 1] += pt[p]; for (int i = runsLen; --i >= 0; ) runs[--pt[runsWork[i].first]] = runsWork[i]; runs.erase(std::unique(runs.begin(), runs.end()), runs.end()); return runs; } template vector>> repetitions(const String &as) { return repetitions(as, SuffixArray(as, /*rmq=*/true)); } //////////////////////////////////////////////////////////////////////////////// constexpr int INF = 1001001001; constexpr int TEN[7] = { 1, 10, 100, 1000, 10000, 100000, 1000000, }; int N; char S[500'010]; int main() { for (int numCases; ~scanf("%d", &numCases); ) { for (int caseId = 1; caseId <= numCases; ++caseId) { scanf("%s", S); N = strlen(S); const auto runs = repetitions(string(S)); // cerr<<"runs = "<> headss[6]; vector>>> quess[6]; for (int e = 0; e < 6; ++e) { headss[e].assign(len, {}); quess[e].assign(len, {}); } for (int i = 0; i < len; ++i) { const int p = runs[i].first; const int u = runs[i].second.first; const int v = runs[i].second.second; const int lim = (v - u) / p; const int sz = min(v - u - 2*p + 1, p); for (int e = 0, ten = 1; ten <= lim; ++e, ten *= 10) { headss[e][i].assign(sz, 0); quess[e][i].assign(sz, {}); } } vector> addssL(N + 1), remssL(N + 1); vector> addssR(N + 1), remssR(N + 1); for (int i = 0; i < len; ++i) { const int p = runs[i].first; const int u = runs[i].second.first; const int v = runs[i].second.second; addssL[u].push_back(i); remssL[v - 2*p].push_back(i); addssR[u + 2*p].push_back(i); remssR[v].push_back(i); } pair norun(INF, -1); vector dp(N + 1, INF); vector> prv(N + 1, make_pair(-1, -1)); set onL, onR; dp[0] = 0; for (int x = 0; x <= N; ++x) { if (x) { // get for (const int i : addssR[x]) onR.insert(i); for (const int i : onR) { const int p = runs[i].first; const int u = runs[i].second.first; const int v = runs[i].second.second; const int lim = (v - u) / p; const int r = (x - u) % p; for (int e = 0, ten = 1; ten <= lim; ++e, ten *= 10) { int &head = headss[e][i][r]; auto &que = quess[e][i][r]; for (; head < (int)que.size() && que[head].second + (TEN[e + 1] - 1) * p < x; ++head) {} if (head < (int)que.size()) { // cerr< val(dp[x] + p + (e + 1), x); for (; head < (int)que.size() && que.back() >= val; que.pop_back()) {} // cerr<