# include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
const double pi = acos(-1);
template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }
template<class T>constexpr T hinf() { return inf<T>() / 2; }
template <typename T_char>T_char TL(T_char cX) { return tolower(cX); }
template <typename T_char>T_char TU(T_char cX) { return toupper(cX); }
template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }
template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }
int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }
int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }
int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }
ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };
ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };
ll MOD(ll x, ll m){return (x%m+m)%m; }
ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; }
template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;
# define all(qpqpq)           (qpqpq).begin(),(qpqpq).end()
# define UNIQUE(wpwpw)        (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())
# define LOWER(epepe)         transform(all((epepe)),(epepe).begin(),TL<char>)
# define UPPER(rprpr)         transform(all((rprpr)),(rprpr).begin(),TU<char>)
# define rep(i,upupu)         for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)
# define reps(i,opopo)        for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)
# define len(x)                ((ll)(x).size())
# define bit(n)               (1LL << (n))
# define pb push_back
# define exists(c, e)         ((c).find(e) != (c).end())

struct INIT{
	INIT(){
		std::ios::sync_with_stdio(false);
		std::cin.tie(0);
		cout << fixed << setprecision(20);
	}
}INIT;

namespace mmrz {
	void solve();
}

int main(){
	mmrz::solve();
}
#define debug(...) (static_cast<void>(0))

using namespace mmrz;


template <std::uint_fast64_t Modulus> class modint {
	using u64 = std::uint_fast64_t;
public:
	u64 a;
	constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}
	constexpr u64 &value() noexcept { return a; }
	constexpr const u64 &value() const noexcept { return a; }
	constexpr modint operator+(const modint rhs) const noexcept {
		return modint(*this) += rhs;
	}
	constexpr modint operator-(const modint rhs) const noexcept {
		return modint(*this) -= rhs;
	}
	constexpr modint operator*(const modint rhs) const noexcept {
		return modint(*this) *= rhs;
	}
	constexpr modint operator/(const modint rhs) const noexcept {
		return modint(*this) /= rhs;
	}
	constexpr modint &operator+=(const modint rhs) noexcept {
		a += rhs.a;
		if (a >= Modulus) {
			a -= Modulus;
		}
		return *this;
	}
	constexpr modint &operator-=(const modint rhs) noexcept {
		if (a < rhs.a) {
			a += Modulus;
		}
		a -= rhs.a;
		return *this;
	}
	constexpr modint &operator*=(const modint rhs) noexcept {
		a = a * rhs.a % Modulus;
		return *this;
	}
	constexpr modint &operator/=(modint rhs) noexcept {
		u64 exp = Modulus - 2;
		while (exp) {
			if (exp % 2) {
				*this *= rhs;
			}
			rhs *= rhs;
			exp /= 2;
		}
		return *this;
	}

	friend std::ostream& operator<<(std::ostream& os, const modint& rhs) {
		os << rhs.a;
		return os;
	}
};
using mint = modint<998244353>;

vector<vector<mint>> matrix_multiply(vector<vector<mint>> X, vector<vector<mint>> Y) {
	vector<vector<mint>> Z(X.size(), vector<mint>(Y[0].size()));
	rep(i, X.size()) {
		rep(k, Y.size()) {
			rep(j, Y[0].size()) {
				Z[i][j] = (Z[i][j] + X[i][k] * Y[k][j]);
			}
		}
	}
	return Z;
}

//A^nの計算
vector<vector<mint>> matrix_pow(vector<vector<mint>> A, ll n) {
	vector<vector<mint>> B(A.size(), vector<mint>(A[0].size()));
	//単位行列でBを初期化
	rep(i, B.size()) {
		B[i][i] = 1;
	}

	while (n>0) {
		if (n & 1) { B = matrix_multiply(B, A); }
		A = matrix_multiply(A, A);
		n = n >> 1;
	}
	return B;
}

void SOLVE(){
	ll _x, _y, n;
	cin >> _x >> _y >> n;
	if(n == 1){
		cout << _x << " " << _y << endl;
		return;
	}
	mint x = MOD(_x, 998244353), y = MOD(_y, 998244353);
	vector<vector<mint>> I = {{1, 0}, {0, 1}};
	vector<vector<mint>> xn = matrix_pow({{x, mint(998244353-5)*y}, {y, x}}, n);
	vector<vector<mint>> l = {{I[0][0]-xn[0][0], I[0][1]-xn[0][1]}, {I[1][0]-xn[1][0], I[1][1]-xn[1][1]}};
	vector<vector<mint>> r = {{I[0][0]-x, I[0][1]+mint(5)*y}, {I[1][0]-y, I[1][1]-x}};
	vector<vector<mint>> r_inv = {{r[1][1], mint(998244353)-r[0][1]}, {mint(998244353)-r[1][0], r[0][0]}};
	mint inv = mint(1) / (r[0][0]*r[1][1] - r[0][1]*r[1][0]);
	rep(i, 2)rep(j, 2)r_inv[i][j] *= inv;

	vector<vector<mint>> s = matrix_multiply(l, r_inv);
	mint X = s[0][0]*x + s[0][1]*y;
	mint Y = s[1][0]*x + s[1][1]*y;

	cout << X << " " << Y << endl;
}

void mmrz::solve(){
	int t = 1;
	//cin >> t;
	while(t--)SOLVE();
}