# include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; const double pi = acos(-1); template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); } template<class T>constexpr T hinf() { return inf<T>() / 2; } template <typename T_char>T_char TL(T_char cX) { return tolower(cX); } template <typename T_char>T_char TU(T_char cX) { return toupper(cX); } template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; } template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; } int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; } int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; } int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; } ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); }; ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; }; ll MOD(ll x, ll m){return (x%m+m)%m; } ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; } template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>; # define all(qpqpq) (qpqpq).begin(),(qpqpq).end() # define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end()) # define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>) # define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>) # define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++) # define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++) # define len(x) ((ll)(x).size()) # define bit(n) (1LL << (n)) # define pb push_back # define exists(c, e) ((c).find(e) != (c).end()) struct INIT{ INIT(){ std::ios::sync_with_stdio(false); std::cin.tie(0); cout << fixed << setprecision(20); } }INIT; namespace mmrz { void solve(); } int main(){ mmrz::solve(); } #define debug(...) (static_cast<void>(0)) using namespace mmrz; template <std::uint_fast64_t Modulus> class modint { using u64 = std::uint_fast64_t; public: u64 a; constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {} constexpr u64 &value() noexcept { return a; } constexpr const u64 &value() const noexcept { return a; } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint &operator+=(const modint rhs) noexcept { a += rhs.a; if (a >= Modulus) { a -= Modulus; } return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if (a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint &operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) { *this *= rhs; } rhs *= rhs; exp /= 2; } return *this; } friend std::ostream& operator<<(std::ostream& os, const modint& rhs) { os << rhs.a; return os; } }; using mint = modint<998244353>; vector<vector<mint>> matrix_multiply(vector<vector<mint>> X, vector<vector<mint>> Y) { vector<vector<mint>> Z(X.size(), vector<mint>(Y[0].size())); rep(i, X.size()) { rep(k, Y.size()) { rep(j, Y[0].size()) { Z[i][j] = (Z[i][j] + X[i][k] * Y[k][j]); } } } return Z; } //A^nの計算 vector<vector<mint>> matrix_pow(vector<vector<mint>> A, ll n) { vector<vector<mint>> B(A.size(), vector<mint>(A[0].size())); //単位行列でBを初期化 rep(i, B.size()) { B[i][i] = 1; } while (n>0) { if (n & 1) { B = matrix_multiply(B, A); } A = matrix_multiply(A, A); n = n >> 1; } return B; } void SOLVE(){ ll _x, _y, n; cin >> _x >> _y >> n; if(_x == 0 && _y == 0){ cout << 0 << " " << 0 << endl; return; } if(n == 1){ cout << _x << " " << _y << endl; return; } mint x = MOD(_x, 998244353), y = MOD(_y, 998244353); vector<vector<mint>> I = {{1, 0}, {0, 1}}; vector<vector<mint>> xn = matrix_pow({{x, mint(998244353-5)*y}, {y, x}}, n); vector<vector<mint>> l = {{I[0][0]-xn[0][0], I[0][1]-xn[0][1]}, {I[1][0]-xn[1][0], I[1][1]-xn[1][1]}}; vector<vector<mint>> r = {{I[0][0]-x, I[0][1]+mint(5)*y}, {I[1][0]-y, I[1][1]-x}}; vector<vector<mint>> r_inv = {{r[1][1], mint(998244353)-r[0][1]}, {mint(998244353)-r[1][0], r[0][0]}}; mint inv = mint(1) / (r[0][0]*r[1][1] - r[0][1]*r[1][0]); rep(i, 2)rep(j, 2)r_inv[i][j] *= inv; vector<vector<mint>> s = matrix_multiply(l, r_inv); mint X = s[0][0]*x + s[0][1]*y; mint Y = s[1][0]*x + s[1][1]*y; cout << X << " " << Y << endl; } void mmrz::solve(){ int t = 1; //cin >> t; while(t--)SOLVE(); }