import typing class DSU: ''' Implement (union by size) + (path halving) Reference: Zvi Galil and Giuseppe F. Italiano, Data structures and algorithms for disjoint set union problems ''' def __init__(self, n: int = 0) -> None: self._n = n self.parent_or_size = [-1] * n def merge(self, a: int, b: int) -> int: assert 0 <= a < self._n assert 0 <= b < self._n x = self.leader(a) y = self.leader(b) if x == y: return x if -self.parent_or_size[x] < -self.parent_or_size[y]: x, y = y, x self.parent_or_size[x] += self.parent_or_size[y] self.parent_or_size[y] = x return x def same(self, a: int, b: int) -> bool: assert 0 <= a < self._n assert 0 <= b < self._n return self.leader(a) == self.leader(b) def leader(self, a: int) -> int: assert 0 <= a < self._n parent = self.parent_or_size[a] while parent >= 0: if self.parent_or_size[parent] < 0: return parent self.parent_or_size[a], a, parent = ( self.parent_or_size[parent], self.parent_or_size[parent], self.parent_or_size[self.parent_or_size[parent]] ) return a def size(self, a: int) -> int: assert 0 <= a < self._n return -self.parent_or_size[self.leader(a)] def groups(self) -> typing.List[typing.List[int]]: leader_buf = [self.leader(i) for i in range(self._n)] result: typing.List[typing.List[int]] = [[] for _ in range(self._n)] for i in range(self._n): result[leader_buf[i]].append(i) return list(filter(lambda r: r, result)) N, M, Q = map(int, input().split()) S = [list(map(int, list(input()))) for _ in range(N)] UV = [list(map(int, input().split())) for _ in range(M)] dsu = DSU(N * 8) for i, s in enumerate(S): for j in range(7): if S[i][j] == 1 and S[i][(j + 1) % 7] == 1: dsu.merge(8 * i + j, 8 * i + (j + 1) % 7) E = [[] for _ in range(N)] for u, v in UV: u -= 1 v -= 1 E[u].append(v) E[v].append(u) for i in range(7): if S[u][i] == 1 and S[v][i] == 1: dsu.merge(8 * u + i, 8 * v + i) for _ in range(Q): t, x, y = map(int, input().split()) x -= 1 if t == 2: print(dsu.size(8 * x)) else: y -= 1 S[x][y] = 1 if S[x][(y - 1) % 7] == 1: dsu.merge(8 * x + y, 8 * x + (y - 1) % 7) if S[x][(y + 1) % 7] == 1: dsu.merge(8 * x + y, 8 * x + (y + 1) % 7) for z in E[x]: if S[z][y] == 1: dsu.merge(8 * z + y, 8 * x + y)