#include<bits/stdc++.h> #include<atcoder/all> using namespace std; namespace my{ using ml=atcoder::modint998244353; auto&operator>>(istream&i,ml&x){int t;i>>t;x=t;return i;} auto&operator<<(ostream&o,const ml&x){return o<<(int)x.val();} #define eb emplace_back #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define FO(n) for(ll ij=n;ij-->0;) #define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step) #define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__)) #define of(i,...) for(auto[i,i##stop,i##step]=range(1,__VA_ARGS__);i>=i##stop;i+=i##step) #define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a) #define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{ void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);} using ll=long long; constexpr auto range(bool s,auto...a){array<ll,3>r{0,0,1};ll I=0;((r[I++]=a),...);if(!s&&I==1)swap(r[0],r[1]);r[0]-=s;if(s)r[2]*=-1;return r;} constexpr char newline=10; constexpr char space=32; auto max(auto...a){return max(initializer_list<common_type_t<decltype(a)...>>{a...});} auto min(auto...a){return min(initializer_list<common_type_t<decltype(a)...>>{a...});} template<class A,class B>struct pair{ A a;B b; pair()=default; pair(A a,B b):a(a),b(b){} pair(const std::pair<A,B>&p):a(p.first),b(p.second){} auto operator<=>(const pair&)const=default; pair operator+(const pair&p)const{return{a+p.a,b+p.b};} friend istream&operator>>(istream&i,pair&p){return i>>p.a>>p.b;} friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<space<<p.b;} }; auto&rev(auto&a){ranges::reverse(a);return a;} template<class T,class U>ostream&operator<<(ostream&o,const std::pair<T,U>&p){return o<<p.first<<space<<p.second;} template<ll k>auto pack_kth(const auto&...a){return get<k>(make_tuple(a...));} template<class T,size_t...I>auto pack_slice_impl(index_sequence<I...>, const auto&...a){return array<T,sizeof...(I)>{get<I>(forward_as_tuple(a...))...};} template<class T,size_t n>auto pack_slice(const auto&...a){return pack_slice_impl<T>(make_index_sequence<n>{},a...);} template<class V>concept vectorial=is_base_of_v<vector<typename V::value_type>,V>; template<class T>struct vec_attr{using core_type=T;static constexpr int rank=0;}; template<vectorial V>struct vec_attr<V>{using core_type=typename vec_attr<typename V::value_type>::core_type;static constexpr int rank=vec_attr<typename V::value_type>::rank+1;}; template<class T>using core_t=vec_attr<T>::core_type; template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;} template<class V>ostream&operator<<(ostream&o,const vector<V>&v){fe(v,e)o<<e<<string(&e!=&v.back(),vectorial<V>?newline:space);return o;} template<class V>struct vec:vector<V>{ using vector<V>::vector; vec(const vector<V>&v){vector<V>::operator=(v);} template<class...A>requires(sizeof...(A)>=3)vec(A...a){const ll n=sizeof...(a)-1;auto t=pack_slice<ll,n>(a...);ll s[n];fo(i,n)s[i]=t[i];*this=make_vec(s,pack_kth<n>(a...));} template<class T,ll n,ll i=0>static auto make_vec(const ll(&s)[n],T x){if constexpr(i==n-1)return vec<T>(s[i],x);else{auto X=make_vec<T,n,i+1>(s,x);return vec<decltype(X)>(s[i],X);}} vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;} vec operator^(const vec&u)const{return vec{*this}^=u;} vec&operator+=(const vec&u){vec&v=*this;fo(i,v.size())v[i]+=u[i];return v;} vec&operator-=(const vec&u){vec&v=*this;fo(i,v.size())v[i]-=u[i];return v;} vec operator+(const vec&u)const{return vec{*this}+=u;} vec operator-(const vec&u)const{return vec{*this}-=u;} vec&operator++(){fe(*this,e)++e;return*this;} vec&operator--(){fe(*this,e)--e;return*this;} vec operator-()const{vec v=*this;fe(v,e)e=-e;return v;} ll size()const{return vector<V>::size();} auto scan(const auto&f)const{pair<core_t<V>,bool>r{};fe(*this,e)if constexpr(!vectorial<V>)r.b?f(r.a,e),r:r={e,1};else if(auto s=e.scan(f);s.b)r.b?f(r.a,s.a),r:r=s;return r;} auto max()const{return scan([](auto&a,const auto&b){a<b?a=b:0;}).a;} auto min()const{return scan([](auto&a,const auto&b){a>b?a=b:0;;}).a;} auto rev()const{vec v=*this;ranges::reverse(v);return v;} }; template<ll rank,class T>struct tensor_helper{using type=vec<typename tensor_helper<rank-1,T>::type>;}; template<class T>struct tensor_helper<0,T>{using type=T;}; template<ll rank,class T>using tensor=typename tensor_helper<rank,T>::type; template<class...A>requires(sizeof...(A)>=2)vec(A...a)->vec<tensor<sizeof...(a)-2,remove_reference_t<decltype(get<sizeof...(a)-1>(declval<tuple<A...>>()))>>>; vec(ll)->vec<ll>; void lin(auto&...a){(cin>>...>>a);} template<char c=space>void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<string(--n>0,c)),...);cout<<newline;} auto mod(auto a,auto m){return(a%=m)<0?a+m:a;} template<class T>concept modulary=requires(T t){t.mod();}; template<class T>struct factorial{ ll M; vec<T>fa,fa_inv; factorial(ll M):M(M),fa(M+1){ fa[0]=1; fo(i,1,M+1)fa[i]=fa[i-1]*i; if constexpr(modulary<T>){ fa_inv.resize(M+1); fa_inv.back()=fa.back().inv(); of(i,M)fa_inv[i]=fa_inv[i+1]*(i+1); } } T operator()(ll n)const{assert(n<=M);return fa[n];} T inv(ll n)const{assert(n<=M);return fa_inv[n];} }; namespace fft{ using real=double; struct complex{ real x,y; complex()=default; complex(real x,real y):x(x),y(y){} inline complex operator+(const complex &c)const{return complex(x+c.x,y+c.y);} inline complex operator-(const complex &c)const{return complex(x-c.x,y-c.y);} inline complex operator*(const complex &c)const{return complex(x*c.x-y*c.y,x*c.y+y*c.x);} inline complex conj()const{return complex(x,-y);} }; const real PI=acosl(-1); ll base=1; vector<complex>rts={{0,0},{1,0}}; vector<int>fft_rev={0,1}; void ensure_base(int nbase){ if(nbase<=base)return; fft_rev.resize(1<<nbase); rts.resize(1<<nbase); fo(i,1<<nbase)fft_rev[i]=(fft_rev[i>>1]>>1)+((i&1)<<(nbase-1)); while(base<nbase){ real angle=PI*2.0/(1<<(base+1)); fo(i,1<<(base-1),1<<base){ rts[i<<1]=rts[i]; real angle_i=angle*(2*i+1-(1<<base)); rts[(i<<1)+1]=complex(std::cos(angle_i),std::sin(angle_i)); } ++base; } } void fast_fourier_transform(vector<complex>&a,int n){ assert((n&(n-1))==0); int zeros=__builtin_ctz(n); ensure_base(zeros); int shift=base-zeros; fo(i,n)if(i<(fft_rev[i]>>shift))swap(a[i],a[fft_rev[i]>>shift]); for(int k=1;k<n;k<<=1){ for(int i=0;i<n;i+=2*k){ for(int j=0;j<k;j++){ complex z=a[i+j+k]*rts[j+k]; a[i+j+k]=a[i+j]-z; a[i+j]=a[i+j]+z; } } } } } template<class T>struct arbitrary_mod_convolution{ using real=fft::real; using complex=fft::complex; arbitrary_mod_convolution(){} std::vector<T>multiply(const std::vector<T>&a,const std::vector<T>&b,int need=-1){ if(need==-1)need=a.size()+b.size()-1; int nbase=0; while((1<<nbase)<need)nbase++; fft::ensure_base(nbase); int sz=1<<nbase; std::vector<complex>fa(sz); fo(i,a.size())fa[i]=complex(a[i].val()&((1<<15)-1),a[i].val()>>15); fft::fast_fourier_transform(fa,sz); std::vector<complex>fb(sz); if(a==b){ fb=fa; }else{ fo(i,b.size())fb[i]=complex(b[i].val()&((1<<15)-1),b[i].val()>>15); fft::fast_fourier_transform(fb,sz); } real ratio=0.25/sz; complex r2(0,-1),r3(ratio,0),r4(0,-ratio),r5(0,1); for(int i=0;i<=(sz>>1);i++){ int j=(sz-i)&(sz-1); complex a1=(fa[i]+fa[j].conj()); complex a2=(fa[i]-fa[j].conj())*r2; complex b1=(fb[i]+fb[j].conj())*r3; complex b2=(fb[i]-fb[j].conj())*r4; if(i!=j){ complex c1=(fa[j]+fa[i].conj()); complex c2=(fa[j]-fa[i].conj())*r2; complex d1=(fb[j]+fb[i].conj())*r3; complex d2=(fb[j]-fb[i].conj())*r4; fa[i]=c1*d1+c2*d2*r5; fb[i]=c1*d2+c2*d1; } fa[j]=a1*b1+a2*b2*r5; fb[j]=a1*b2+a2*b1; } fft::fast_fourier_transform(fa,sz); fft::fast_fourier_transform(fb,sz); std::vector<T>ret(need); fo(i,need){ int64_t aa=llround(fa[i].x); int64_t bb=llround(fb[i].x); int64_t cc=llround(fa[i].y); aa=T(aa).val(),bb=T(bb).val(),cc=T(cc).val(); ret[i]=aa+(bb<<15)+(cc<<30); } return ret; } }; template<class T>struct formal_power_series:vec<T>{ using vec<T>::vec; using fps=formal_power_series; static constexpr ll SPARSE_THRESHOLD=20; static inline arbitrary_mod_convolution<T>fft; static fps mul(const fps&a,const fps&b){ if constexpr(T::mod()==998244353)return convolution(a,b); else return fft.multiply(a,b); } auto operator<=>(const fps&f)const{return this->size()<=>f.size();} fps pre(ll deg)const{fps r(this->begin(),this->begin()+min(this->size(),deg));r.resize(deg);return r;} fps&operator+=(const fps&g){if(g.size()>this->size())this->resize(g.size());fo(i,g.size())(*this)[i]+=g[i];return*this;} fps&operator-=(const fps&g){if(g.size()>this->size())this->resize(g.size());fo(i,g.size())(*this)[i]-=g[i];return*this;} fps&operator*=(const fps&g){return*this=(this->size()&&g.size()?mul(*this,g):fps{});} fps&operator>>=(ll sz){if(this->size()<=sz)return*this=fps{};this->erase(this->begin(),this->begin()+sz);return*this;} fps&operator<<=(ll sz){this->insert(this->begin(),sz,T{});return*this;} fps&operator/=(const fps&g){ ll I1=0,I2=0; while(I1<this->size()&&(*this)[I1]==0)++I1; while(I2<g.size()&&g[I2]==0)++I2; assert(I1>=I2); ll L=max(this->size(),g.size()); return*this=((*this>>I2)*(g>>I2).inv(L)).pre(L); } fps operator+(const fps&g)const{return fps{*this}+=g;} fps operator-(const fps&g)const{return fps{*this}-=g;} fps operator*(const fps&g)const{return fps{*this}*=g;} fps operator/(const fps&g)const{return fps{*this}/=g;} fps operator-()const{auto r=*this;fe(r,x)x=-x;return r;} fps operator>>(ll sz)const{return fps{*this}>>=sz;} fps operator<<(ll sz)const{return fps{*this}<<=sz;} fps&operator+=(const T&c){if(!this->size())this->resize(1);(*this)[0]+=c;return*this;} fps&operator-=(const T&c){if(!this->size())this->resize(1);(*this)[0]-=c;return*this;} fps&operator*=(const T&c){fo(i,this->size())(*this)[i]*=c;return*this;} fps&operator/=(const T&c){T c_inv=T{1}/c;fo(i,this->size())(*this)[i]*=c_inv;return*this;} fps operator+(const T&c)const{return fps{*this}+=c;} fps operator-(const T&c)const{return fps{*this}-=c;} fps operator*(const T&c)const{return fps{*this}*=c;} fps operator/(const T&c)const{return fps{*this}/=c;} T operator()(T x)const{T r=0,xi=1;fe(*this,ai)r+=ai*xi,xi*=x;return r;} fps inv_sparse(ll deg=-1)const{ assert((*this)[0]!=T{}); ll n=this->size(); if(deg==-1)deg=n; vec<pair<ll,T>>p; fo(i,1,n)if((*this)[i]!=T{})p.eb(i,(*this)[i]); fps r(deg); r[0]=T{1}/(*this)[0]; fo(i,1,deg){ T t{}; fe(p,k,fk){ if(i-k<0)break; t-=fk*r[i-k]; } r[i]=r[0]*t; } return r; } ll nonzero_terms_count()const{ll r=0;fe(*this,e)r+=(e!=T{});return r;} fps inv(ll deg=-1)const{ assert((*this)[0]!=T{}); if(deg==-1)deg=this->size(); if(nonzero_terms_count()<SPARSE_THRESHOLD)return inv_sparse(deg); fps r{T{1}/(*this)[0]}; for(ll i=1;i<deg;i<<=1)r=(r*2-this->pre(i<<1)*(r*r)).pre(i<<1); return r.pre(deg); } fps rev()const{fps r{*this};ranges::reverse(r);return r;} }; template<class T>using fps=formal_power_series<T>; single_testcase void solve(){ LL(N); factorial<ml>fa(N); fps<ml>f(N+1),g(N+1); fo(i,N+1){ f[i]=fa(i); g[i]=fa.inv(i); } f*=g.rev(); fo(K,1,N+1)pp(f[K+N]*fa(N-K+1)*K); }}