#define PROBLEM "https://yukicoder.me/problems/no/833" #include #include #include #include #include #include #include #include namespace mtd { template requires std::is_invocable_r_v struct Monoid { using value_type = S; constexpr static S _element = element; using op_type = op; S m_val; constexpr Monoid(S val) : m_val(val) {} constexpr Monoid() : Monoid(element) {} constexpr Monoid binaryOperation(const Monoid& m2) const { return op()(m_val, m2.m_val); } friend std::ostream& operator<<(std::ostream& os, const Monoid& m) { return os << m.m_val; } }; namespace __detail { template typename S> concept is_monoid_specialization_of = requires { typename std::enable_if_t>>; }; } template concept monoid = __detail::is_monoid_specialization_of;} namespace mtd { template class LazySegmentTree { private: const int m_size; std::vector m_node; std::vector m_lazy; using S = decltype(Monoid().m_val); constexpr int calcSize(int n) const { int size = 1; while (size < n) { size <<= 1; } return size; } constexpr auto _lazy_update(int i, const MonoidOp& val) { if (i >= (m_size << 1) - 1) { return; } m_lazy[i] = m_lazy[i].binaryOperation(val); } constexpr auto _propagate(int i) { m_node[i] = op()(m_node[i], m_lazy[i]); _lazy_update((i << 1) + 1, m_lazy[i]); _lazy_update((i << 1) + 2, m_lazy[i]); m_lazy[i] = MonoidOp(); } constexpr auto _update(int l, int r, int k, int nl, int nr, const MonoidOp& m) { _propagate(k); if (nr < l || r < nl) { return; } if (l <= nl && nr <= r) { _lazy_update(k, m); _propagate(k); return; } _update(l, r, (k << 1) + 1, nl, (nl + nr) >> 1, m); _update(l, r, (k << 1) + 2, ((nl + nr) >> 1) + 1, nr, m); m_node[k] = m_node[(k << 1) + 1].binaryOperation(m_node[(k << 1) + 2]); } constexpr auto _query(int l, int r, int k, int nl, int nr) { _propagate(k); if (nr < l || r < nl) { return Monoid(); } if (l <= nl && nr <= r) { return m_node[k]; } auto l_val = _query(l, r, (k << 1) + 1, nl, (nl + nr) >> 1); auto r_val = _query(l, r, (k << 1) + 2, ((nl + nr) >> 1) + 1, nr); return l_val.binaryOperation(r_val); } constexpr auto _construct(const std::vector& vec) { for (unsigned int i = 0; i < vec.size(); ++i) { m_node[i + m_size - 1] = Monoid(vec[i]); } for (int i = m_size - 2; i >= 0; --i) { m_node[i] = m_node[(i << 1) | 1].binaryOperation(m_node[(i + 1) << 1LL]); } } public: constexpr LazySegmentTree(int n) : m_size(calcSize(n)), m_node((m_size << 1) - 1), m_lazy((m_size << 1) - 1) {} constexpr LazySegmentTree(int n, const std::vector& vec) : LazySegmentTree(n) { _construct(vec); } constexpr auto update(int l, int r, const MonoidOp& val) { _update(l, r, 0, 0, m_size - 1, val); } constexpr auto query(int l, int r) { return _query(l, r, 0, 0, m_size - 1).m_val; } /* * f([l, r]) = true となる最大のr * judge: (Monoid) -> bool **/ template constexpr auto max_right(int _l, const F& judge) { if (!judge(Monoid())) { throw std::runtime_error("SegmentTree.max_right.judge(e) must be true"); } query(_l, m_size - 1); auto l = std::max(_l, 0) + m_size; auto r = 2 * m_size - 1; auto lm = Monoid(); while (l <= r) { if (l & 1) { auto next = lm.binaryOperation(m_node[l - 1]); if (!judge(next)) { auto itr = l; while (itr < m_size) { _propagate(itr - 1); auto litr = 2 * itr; auto ritr = 2 * itr + 1; _propagate(litr - 1); auto lval = lm.binaryOperation(m_node[litr - 1]); if (!judge(lval)) { itr = litr; } else { itr = ritr; std::swap(lm, lval); } } return itr - m_size - 1; } std::swap(lm, next); ++l; } l >>= 1, r >>= 1; } return m_size - 1; } /* * f([l, r]) = true となる最小のl * judge: (Monoid) -> bool **/ template constexpr auto min_left(int _r, const F& judge) { if (!judge(Monoid())) { throw std::runtime_error("SegmentTree.min_left.judge(e) must be true"); } query(0, _r); auto l = m_size; auto r = std::min(_r, m_size - 1) + m_size; auto rm = Monoid(); while (l <= r) { if (l & 1) { ++l; } if (!(r & 1) || (_r == m_size - 1 && r == 1)) { auto next = m_node[r - 1].binaryOperation(rm); if (!judge(next)) { auto itr = r; while (itr < m_size) { _propagate(itr); auto litr = 2 * itr; auto ritr = 2 * itr + 1; _propagate(ritr - 1); auto rval = m_node[ritr - 1].binaryOperation(rm); if (!judge(rval)) { itr = ritr; } else { itr = litr; std::swap(rm, rval); } } return itr - m_size + 1; } std::swap(rm, next); --r; } l >>= 1, r >>= 1; } return 0; } constexpr auto debug() { for (int i = 0; i < (m_size << 1) - 1; ++i) { _propagate(i); } for (int i = 0; i < m_size; ++i) { std::cout << m_node[m_size + i - 1] << " "; } std::cout << std::endl; } }; namespace type { /* 各種頻出サンプル */ using P = std::pair; constexpr long long update_element = -1e18; /*---- 要素 ----*/ using M_SUM = Monoid; using M_MIN = Monoid(1e18), decltype([](long long a, long long b) { return std::min(a, b); })>; using M_MAX = Monoid(-1e18), decltype([](long long a, long long b) { return std::max(a, b); })>; /*---- 作用素 ----*/ using M_UP = Monoid; using M_ADD = Monoid(0), decltype([](long long a, long long b) { return a + b; })>; /*---- 作用 ----*/ using OP_SUM_UP = decltype([](const M_SUM& m, const M_UP& m2) { if (m2.m_val == update_element) { return m; } return M_SUM(P{m.m_val.second * m2.m_val, m.m_val.second}); }); using OP_MIN_UP = decltype([](const M_MIN& m, const M_UP& m2) { if (m2.m_val == update_element) { return m; } return M_MIN(m2.m_val); }); using OP_MAX_UP = decltype([](const M_MAX& m, const M_UP& m2) { if (m2.m_val == update_element) { return m; } return M_MAX(m2.m_val); }); using OP_SUM_ADD = decltype([](const M_SUM& m, const M_ADD& m2) { return M_SUM( P{m.m_val.first + m.m_val.second * m2.m_val, m.m_val.second}); }); using OP_MIN_ADD = decltype([](const M_MIN& m, const M_ADD& m2) { return M_MIN{m.m_val + m2.m_val}; }); using OP_MAX_ADD = decltype([](const M_MAX& m, const M_ADD& m2) { return M_MAX{m.m_val + m2.m_val}; }); } } namespace mtd { template class SegmentTree { private: const int m_size; std::vector m_node; using S = decltype(Monoid().m_val); constexpr int calcSize(int n) const { int size = 1; while (size < n) { size <<= 1; } return size; } template constexpr auto _update_op(int itr, Monoid&& val, const Lambda& op) { int i = itr + m_size - 1; m_node[i] = op(m_node[i], std::forward(val)); while (i) { i = (i - 1) >> 1; m_node[i] = m_node[(i << 1) | 1].binaryOperation(m_node[(i + 1) << 1]); } } constexpr auto _query(int _l, int _r) const { auto l = std::max(_l, 0) + m_size; auto r = std::min(_r, m_size - 1) + m_size; auto lm = Monoid(); auto rm = Monoid(); while (l <= r) { if (l & 1) { lm = lm.binaryOperation(m_node[l - 1]); ++l; } if (!(r & 1)) { rm = m_node[r - 1].binaryOperation(rm); --r; } l >>= 1, r >>= 1; } return lm.binaryOperation(rm); } constexpr auto _construct(const std::vector& vec) { for (unsigned int i = 0; i < vec.size(); ++i) { m_node[i + m_size - 1] = Monoid(vec[i]); } for (int i = m_size - 2; i >= 0; --i) { m_node[i] = m_node[(i << 1) | 1].binaryOperation(m_node[(i + 1) << 1]); } } public: SegmentTree(int n) : m_size(calcSize(n)), m_node((m_size << 1) - 1) {} SegmentTree(int n, const std::vector& vec) : SegmentTree(n) { _construct(vec); } template constexpr auto update_op(int itr, Monoid&& val, const Lambda& op) { return _update_op(itr, std::forward(val), op); } constexpr auto update(int itr, Monoid&& val) { return update_op(itr, std::forward(val), [](const Monoid&, const Monoid& m2) { return m2; }); } constexpr auto add(int itr, Monoid&& val) { return update_op(itr, std::forward(val), [](const Monoid& m1, const Monoid& m2) { return Monoid(m1.m_val + m2.m_val); }); } constexpr auto query(int l, int r) const { return _query(l, r).m_val; } constexpr auto query_all() const { return m_node[0].m_val; } /* * f([l, r]) = true となる最大のr * judge: (Monoid) -> bool **/ template constexpr auto max_right(int _l, const F& judge) const { if (!judge(Monoid())) { throw std::runtime_error("SegmentTree.max_right.judge(e) must be true"); } auto l = std::max(_l, 0) + m_size; auto r = 2 * m_size - 1; auto lm = Monoid(); while (l <= r) { if (l & 1) { auto next = lm.binaryOperation(m_node[l - 1]); if (!judge(next)) { auto itr = l; while (itr < m_size) { auto litr = 2 * itr; auto ritr = 2 * itr + 1; auto lval = lm.binaryOperation(m_node[litr - 1]); if (!judge(lval)) { itr = litr; } else { itr = ritr; std::swap(lm, lval); } } return itr - m_size - 1; } std::swap(lm, next); ++l; } l >>= 1, r >>= 1; } return m_size - 1; } /* * f([l, r]) = true となる最小のl * judge: (Monoid) -> bool **/ template constexpr auto min_left(int _r, const F& judge) const { if (!judge(Monoid())) { throw std::runtime_error("SegmentTree.min_left.judge(e) must be true"); } auto l = m_size; auto r = std::min(_r, m_size - 1) + m_size; auto rm = Monoid(); while (l <= r) { if (l & 1) { ++l; } if (!(r & 1) || (_r == m_size - 1 && r == 1)) { auto next = m_node[r - 1].binaryOperation(rm); if (!judge(next)) { auto itr = r; while (itr < m_size) { auto litr = 2 * itr; auto ritr = 2 * itr + 1; auto rval = m_node[ritr - 1].binaryOperation(rm); if (!judge(rval)) { itr = ritr; } else { itr = litr; std::swap(rm, rval); } } return itr - m_size + 1; } std::swap(rm, next); --r; } l >>= 1, r >>= 1; } return 0; } constexpr auto debug() const { for (int i = 0; i < m_size; ++i) { std::cout << m_node[m_size + i - 1] << " "; } std::cout << std::endl; } };} using ll = long long; signed main() { std::cin.tie(0); std::ios::sync_with_stdio(0); int n, q; std::cin >> n >> q; std::vector a(n); for (auto i : std::views::iota(0, n)) { std::cin >> a[i]; } std::vector v(n); std::iota(v.begin(), v.end(), 0); auto segtree1 = mtd::LazySegmentTree(n, v); auto segtree2 = mtd::LazySegmentTree(n, v); auto range = [&](int i) { auto val = segtree1.query(i, i); auto judge_l = [&](const mtd::type::M_MIN& m) { return m.m_val >= val; }; auto judge_r = [&](const mtd::type::M_MAX& m) { return m.m_val <= val; }; auto l = segtree1.min_left(i, judge_l); auto r = segtree2.max_right(i, judge_r); return std::make_tuple(l, r); }; for (auto i : std::views::iota(0, n)) { range(i); } auto op = [](ll a, ll b) { return a + b; }; using M = mtd::Monoid; auto segtree3 = mtd::SegmentTree(n, a); for ([[maybe_unused]] auto _ : std::views::iota(0, q)) { int t, x; std::cin >> t >> x; --x; if (t == 1) { auto val = segtree1.query(x, x); auto [l, r] = range(x + 1); segtree1.update(l, r, val); segtree2.update(l, r, val); } else if (t == 2) { auto [l, r] = range(x + 1); segtree1.update(x + 1, r, x + 1); segtree2.update(x + 1, r, x + 1); } else if (t == 3) { segtree3.add(x, 1); } else { auto [l, r] = range(x); std::cout << segtree3.query(l, r) << std::endl; } } }