#line 1 "/opt/library/template.hpp" #include using namespace std; using ll = long long; using i64 = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template constexpr T infty = 0; template <> constexpr int infty = 1'000'001'000; template <> constexpr ll infty = ll(infty) * infty * 2; template <> constexpr u32 infty = infty; template <> constexpr u64 infty = infty; template <> constexpr i128 infty = i128(infty) * infty; template <> constexpr double infty = infty; template <> constexpr long double infty = infty; #define inf infty using pi = pair; using vi = vector; using vvi = vector>; template using vc = vector; template using vvc = vector>; template using vvvc = vector>; template using vvvvc = vector>; template using vvvvvc = vector>; template using pq = priority_queue; template using pqg = priority_queue, greater>; #define vv(type, name, h, ...) \ vector> name(h, vector(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector>> name( \ h, vector>(w, vector(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector>>> name( \ a, vector>>( \ b, vector>(c, vector(__VA_ARGS__)))) #define rep1(a) for (ll _ = 0; _ < (ll)(a); ++_) #define rep2(i, a) for (ll i = 0; i < (ll)(a); ++i) #define rep3(i, a, b) for (ll i = a; i < (ll)(b); ++i) #define rep4(i, a, b, c) for (ll i = a; i < (ll)(b); i += (c)) #define rrep1(a) for (ll i = (a)-1; i >= (ll)(0); --i) #define rrep2(i, a) for (ll i = (a)-1; i >= (ll)(0); --i) #define rrep3(i, a, b) for (ll i = (b)-1; i >= (ll)(a); --i) #define rrep4(i, a, b, c) for (ll i = (b)-1; i >= (ll)(a); i -= (c)) #define overload4(a, b, c, d, e, ...) e #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define all(x) (x).begin(),(x).end() #define len(x) (ll)(x.size()) #define elif else if #define bit(x, i) (((x)>>(i))&1) #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll #define abs llabs #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() ll popcnt(ll x) { return __builtin_popcountll(x); } ll popcnt(u64 x) { return __builtin_popcountll(x); } ll popcnt_mod_2(ll x) { return __builtin_parityll(x); } ll popcnt_mod_2(u64 x) { return __builtin_parityll(x); } ll topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } ll topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } ll lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } ll lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template T ceil(T x, T y) { return floor(x + y - 1, y); } template T bmod(T x, T y) { return x - y * floor(x, y); } template pair divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template T SUM(const vector &A) { T s = 0; for (auto &&a: A) s += a; return s; } template T POP(queue &que) { T a = que.front(); que.pop(); return a; } template T POP(deque &que) { T a = que.front(); que.pop_front(); return a; } template T POP(pq &que) { T a = que.top(); que.pop(); return a; } template T POP(pqg &que) { T a = que.top(); que.pop(); return a; } template T POP(vc &que) { T a = que.back(); que.pop_back(); return a; } template ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template f128 binary_search_real(F check, f128 ok, f128 ng, ll iter = 100) { rep(iter) { f128 x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } // ? は -1 vc s_to_vi(const string &S, char first_char) { vc A(S.size()); rep(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template vc cumsum(vc &A, ll off = 1) { ll N = A.size(); vc B(N + 1); rep(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template vi argsort(const vector &A) { vi ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](ll i, ll j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template vc rearrange(const vc &A, const vi &I) { vc B(len(I)); rep(i, len(I)) B[i] = A[I[i]]; return B; } template inline bool chmax(T &a, T b) {return ((a inline bool chmin(T &a, T b) {return ((a>b)?(a=b,true):(false));} inline void wt(const char c) { cout << c; } inline void wt(const string s) { cout << s; } inline void wt(const char *s) { cout << s; } template void wt_integer(T x) { cout << (x); } template void wt_real(T x) { cout << fixed << setprecision(15) << (long double)(x); } template void wt_integer128(T x) { char buf[64]; char *d = end(buf); d--; *d = '\0'; __uint128_t tmp = ((x < 0)? -x : x); do { d--; *d = char(tmp%10 + '0'); tmp /= 10; } while (tmp); if (x < 0) { d--; *d = '-'; } cout << d; } inline void wt(int x) { wt_integer(x); } inline void wt(ll x) { wt_integer(x); } inline void wt(i128 x) { wt_integer128(x); } inline void wt(u32 x) { wt_integer(x); } inline void wt(u64 x) { wt_integer(x); } inline void wt(u128 x) { wt_integer128(x); } inline void wt(double x) { wt_real(x); } inline void wt(long double x) { wt_real(x); } inline void wt(f128 x) { wt_real(x); } template void wt(const pair val) { wt(val.first); wt(' '); wt(val.second); } template void wt_tuple(const T t) { if constexpr (N < std::tuple_size::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get(t); wt(x); wt_tuple(t); } } template void wt(tuple tpl) { wt_tuple(tpl); } template void wt(const array val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template void wt(const vector val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward(tail)...); } void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } void onez(bool t = 1) { print(t ? 1 : 0); } #define endl '\n' #define dump(x) {cerr << #x " = " << x << '\n';} #line 2 "/opt/library/mod/modint_common.hpp" struct has_mod_impl { template static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template static auto check(...) -> std::false_type; }; template class has_mod : public decltype(has_mod_impl::check(std::declval())) {}; template mint inv(ll n) { static const ll mod = mint::get_mod(); static vector dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { ll k = len(dat); ll q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template mint fact(ll n) { static const ll mod = mint::get_mod(); assert(0 <= n && n < mod); static vector dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template mint fact_inv(ll n) { static vector dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv(len(dat))); return dat[n]; } template mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv(xs)); } template mint multinomial(Head &&head, Tail &&... tail) { return fact(head) * fact_invs(std::forward(tail)...); } template mint C_dense(ll n, ll k) { static vvc C; static ll H = 0, W = 0; auto calc = [&](ll i, ll j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { rep(i, H) { C[i].resize(k + 1); rep(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); rep(i, H, n + 1) { C[i].resize(W); rep(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense(n, k); if constexpr (!large) return multinomial(n, k, n - k); k = min(k, n - k); mint x(1); rep(i, k) x *= mint(n - i); return x * fact_inv(k); } template mint H(ll n, ll k) { return C(n+k-1, k); } template mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv(n) * fact(k) * fact(n - k); return mint(1) / C(n, k); } // [x^d](1-x)^{-n} template mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C(n + d - 1, d); } #line 3 "/opt/library/mod/modint.hpp" template struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { ll a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr ll get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1045430273) return {20, 363}; if (mod == 1051721729) return {20, 330}; if (mod == 1053818881) return {20, 2789}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; template void wt(modint x) { wt(x.val); } using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 3 "main.cpp" using mint = modint107; int solve(); int main() { cin.tie(nullptr); ios_base::sync_with_stdio(false); ll T = 1; while (!solve()) if (--T == 0) break; return 0; } int solve() { ll N; cin >> N; vi A(N); rep(i, N) cin >> A[i]; vc B(N); rep(i, N) B[i] = A[i]; rep(N-1) { vc B2; rep(i, len(B)-1) B2.eb(B[i] + B[i+1]); B = move(B2); } print(B[0]); return 0; }