#include #include using namespace std; namespace my{ using ml=atcoder::modint1000000007; auto&operator>>(istream&i,ml&x){int t;i>>t;x=t;return i;} auto&operator<<(ostream&o,const ml&x){return o<<(int)x.val();} #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define FO(n) for(ll ij=n;ij-->0;) #define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i=i##stop;i+=i##step) #define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a) #define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{ void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<r{0,0,1};ll I=0;((r[I++]=a),...);if(!s&&I==1)swap(r[0],r[1]);r[0]-=s;if(s)r[2]*=-1;return r;} constexpr char newline=10; constexpr char space=32; templateauto pack_kth(const auto&...a){return get(make_tuple(a...));} templateauto pack_slice(const auto&...a){return[&](index_sequence){return array{get(forward_as_tuple(a...))...};}(make_index_sequence{});} templateconcept vectorial=is_base_of_v,V>; templateistream&operator>>(istream&i,vector&v){fe(v,e)i>>e;return i;} templateostream&operator<<(ostream&o,const vector&v){fe(v,e)o<?newline:space);return o;} templatestruct vec; templatestruct tensor_helper{using type=vec::type>;}; templatestruct tensor_helper<0,T>{using type=T;}; templateusing tensor=typename tensor_helper::type; templatestruct vec:vector{ using vector::vector; vec(const vector&v){vector::operator=(v);} templaterequires(sizeof...(A)>=3)vec(A...a){const ll n=sizeof...(a)-1;auto t=pack_slice(a...);ll s[n];fo(i,n)s[i]=t[i];*this=make_vec(s,pack_kth(a...));} templatestatic auto make_vec(const ll(&s)[n],T x){if constexpr(i==n-1)return vec(s[i],x);else{auto X=make_vec(s,x);return vec(s[i],X);}} vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;} vec operator^(const vec&u)const{return vec{*this}^=u;} vec&operator+=(const vec&u){vec&v=*this;fo(i,v.size())v[i]+=u[i];return v;} vec&operator-=(const vec&u){vec&v=*this;fo(i,v.size())v[i]-=u[i];return v;} vec operator+(const vec&u)const{return vec{*this}+=u;} vec operator-(const vec&u)const{return vec{*this}-=u;} vec&operator++(){fe(*this,e)++e;return*this;} vec&operator--(){fe(*this,e)--e;return*this;} vec operator-()const{vec v=*this;fe(v,e)e=-e;return v;} vec&operator%=(auto M){vec&v=*this;fe(v,e)e%=M;return v;} vec operator%(auto M)const{return vec{*this}%=M;} ll size()const{return vector::size();} vec inv()const{vec v=*this;fe(v,e)e=e.inv();return v;} }; templaterequires(sizeof...(A)>=2)vec(A...a)->vec(declval>()))>>>; vec(ll)->vec; void lin(auto&...a){(cin>>...>>a);} templatevoid pp(const auto&...a){ll n=sizeof...(a);((cout<0,c)),...);cout<concept modulary=requires(T t){t.mod();}; templatestruct factorial{ ll M; vecfa,fa_inv; factorial(ll M):M(M),fa(M+1){ fa[0]=1; fo(i,1,M+1)fa[i]=fa[i-1]*i; if constexpr(modulary){ fa_inv.resize(M+1); fa_inv.back()=fa.back().inv(); of(i,M)fa_inv[i]=fa_inv[i+1]*(i+1); } } T operator()(ll n)const{assert(n<=M);return fa[n];} T inv(ll n)const{assert(n<=M);return fa_inv[n];} }; templatestruct combination{ ll M; factorialfa; combination(ll M):M(M),fa(M){} T operator()(ll n,ll k)const{ if(n<0||k<0||n)return fa(n)*fa.inv(k)*fa.inv(n-k); else return fa(n)/fa(k)/fa(n-k); } T h(ll n,ll k)const{return operator()(n+k-1,k-1);} }; single_testcase void solve(){ LL(N,M,K); combinationcomb(N+M); auto f=[&](ll n,ll k){return comb.h(n-k,k)*comb.fa(n);}; ml ans=0; fo(k,1,(N+M-K)/2+1)ans+=f(N,k)*f(M,k)/k; pp(ans); }}