import numpy as np from scipy.optimize import LinearConstraint from scipy.optimize import Bounds from scipy.optimize import milp # N = 2048 N = 50 M = 256 def read_ints(): return list(map(int, input().split())) A_src = [[0]*(M+M) for _ in range(N+M)] for i in range(M): A_src[N+i][i*2] = 1 A_src[N+i][i*2+1] = 1 for i in range(N): a_i,b_i,c_i,p_i,q_i,r_i = read_ints() A_src[i][a_i*2+p_i] = 1 A_src[i][b_i*2+q_i] = 1 A_src[i][c_i*2+r_i] = 1 A = np.array(A_src) b_u = np.array([3 if i < N else 1 for i in range(N+M)]) b_l = np.array([1 if i < N else 1 for i in range(N+M)]) constraints = LinearConstraint(A, b_l, b_u) # ub = np.array([1]*(M+M)) # lb = np.array([0]*(M+M)) bounds = Bounds(lb=0, ub=1) c = np.array([-1]*(M+M)) integrality = np.ones_like(c) # integrality = np.zeros_like(c) res = milp(c=c,bounds=bounds,integrality=integrality,constraints=constraints) s = ["0"]*M for i in range(M): if res.x[i*2] < res.x[i*2+1]: s[M-1-i] = "1" print(*s,sep="")