#define SINGLE_TESTCASE #define FAST_CIO #define INF 4'000'000'000'000'000'037LL #define EPS 1e-11 #include using namespace std; #ifndef EPS #define EPS 1e-11 #endif using ld = decltype(EPS); using ll = long long; using uint = unsigned int; using ull = unsigned long long; using pll = pair; using tlll = tuple; using tllll = tuple; #define vc vector template using vvc = vc>; template using vvvc = vc>>; using vb = vc; using vl = vc; using vpll = vc; using vtlll = vc; using vtllll = vc; using vstr = vc; using vvb = vvc; using vvl = vvc; template using pql = priority_queue, greater>; template using pqg = priority_queue; #ifdef __SIZEOF_INT128__ using i128 = __int128_t; using u128 = __uint128_t; i128 stoi128(const string &s) { i128 res = 0; if (s.front() == '-') { for (int i = 1; i < (int)s.size(); i++) res = 10 * res + s[i] - '0'; res = -res; } else { for (auto &&c : s) res = 10 * res + c - '0'; } return res; } string i128tos(i128 x) { if (x == 0) return "0"; string sign = "", res = ""; if (x < 0) x = -x, sign = "-"; while (x > 0) { res += '0' + x % 10; x /= 10; } reverse(res.begin(), res.end()); return sign + res; } istream &operator>>(istream &is, i128 &a) { string s; is >> s; a = stoi128(s); return is; } ostream &operator<<(ostream &os, const i128 &a) { os << i128tos(a); return os; } #endif #define cauto const auto #define overload4(_1, _2, _3, _4, name, ...) name #define rep1(i, n) for (ll i = 0, nnnnn = ll(n); i < nnnnn; i++) #define rep2(i, l, r) for (ll i = ll(l), rrrrr = ll(r); i < rrrrr; i++) #define rep3(i, l, r, d) for (ll i = ll(l), rrrrr = ll(r), ddddd = ll(d); ddddd > 0 ? i < rrrrr : i > rrrrr; i += d) #define rep(...) overload4(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__) #define repi1(i, n) for (int i = 0, nnnnn = int(n); i < nnnnn; i++) #define repi2(i, l, r) for (int i = int(l), rrrrr = int(r); i < rrrrr; i++) #define repi3(i, l, r, d) for (int i = int(l), rrrrr = int(r), ddddd = int(d); ddddd > 0 ? i < rrrrr : i > rrrrr; i += d) #define repi(...) overload4(__VA_ARGS__, repi3, repi2, repi1)(__VA_ARGS__) #define fe(...) for (auto __VA_ARGS__) #define fec(...) for (cauto &__VA_ARGS__) #define fem(...) for (auto &__VA_ARGS__) #ifndef INF #define INF 4'000'000'000'000'000'037LL #endif #ifndef EPS #define EPS 1e-11 #endif template inline constexpr T divfloor(cauto &a, cauto &b) { return T(a) / T(b) - (T(a) % T(b) && (T(a) ^ T(b)) < 0); } template inline constexpr T safemod(cauto &a, cauto &b) { return T(a) - T(b) * divfloor(a, b); } template constexpr T ipow(cauto &a, auto b) { assert(b >= 0); if (b == 0) return 1; if (a == 0 || a == 1) return a; if (a < 0 && a == -1) return b & 1 ? -1 : 1; T res = 1, tmp = a; while (true) { if (b & 1) res *= tmp; b >>= 1; if (b == 0) break; tmp *= tmp; } return res; } #define ALL(a) (a).begin(), (a).end() template inline T SZ(cauto &x) { return x.size(); } template auto dvec(cauto (&sz)[d], const T &init) { if constexpr (i < d) return vc(sz[i], dvec(sz, init)); else return init; } #ifndef INF #define INF 4'000'000'000'000'000'037LL #endif template struct max_op { T operator()(const T &a, const T &b) const { return max(a, b); } }; template struct min_op { T operator()(const T &a, const T &b) const { return min(a, b); } }; template struct const_fn { T operator()() const { return val; } }; using max_e = const_fn; using min_e = const_fn; using zero_fn = const_fn; #ifndef INF #define INF 4'000'000'000'000'000'037LL #endif #if __cplusplus < 202002L template V sorted(V v, Args&&... args) { sort(ALL(v), forward(args)...); return v; } #else #endif template void unique(V &v) { v.erase(unique(ALL(v)), v.end()); } template void rotate(V &v, U k) { const U n = v.size(); k = (k % n + n) % n; rotate(v.begin(), v.begin() + k, v.end()); } template vvc top(const vvc &a) { if (a.empty()) return {}; const int n = a.size(), m = a[0].size(); vvc b(m, vc(n)); repi(i, n) { assert(SZ(a[i]) == m); repi(j, m) b[j][i] = a[i][j]; } return b; } vstr top(const vstr &a) { vvc a_(a.size()); repi(i, SZ(a)) a_[i] = {ALL(a[i])}; vvc b_ = top(a_); vstr b(b_.size()); repi(i, SZ(b)) b[i] = {ALL(b_[i])}; return b; } template struct direct_product { private: vc a; public: direct_product(const vc &a) : a(a) { assert(!a.empty()); fec(ai : a) assert(ai >= 1); } struct Iterator { private: vc b; const direct_product ∏ public: Iterator(const vc &b, const direct_product &prod) : b(b), prod(prod) {} vc operator*() const { return b; } Iterator& operator++() { b.back()++; repi(i, SZ(prod.a) - 1, 0, -1) { if (b[i] == prod.a[i]) { b[i] = 0; b[i - 1]++; } else break; } return *this; } bool operator!=(const Iterator &other) const { return b != other.b; } }; Iterator begin() const { return Iterator(vc(a.size(), 0), *this); } Iterator end() const { vc c(a.size(), 0); c[0] = a[0]; return Iterator(c, *this); } }; const vpll DRULgrid = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; const vpll DRULplane = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}}; #if __cplusplus < 202002L template inline T LB(const V &v, Args&&... args) { return lower_bound(ALL(v), forward(args)...) - v.begin(); } template inline T UB(const V &v, Args&&... args) { return upper_bound(ALL(v), forward(args)...) - v.begin(); } #else #endif template struct is_random_access_iterator { static constexpr bool value = is_same_v< typename iterator_traits::iterator_category, random_access_iterator_tag >; }; template constexpr bool is_random_access_iterator_v = is_random_access_iterator::value; inline constexpr ull MASK(auto k) { return (1ULL << k) - 1ULL; } #if __cplusplus < 202002L inline constexpr ull bit_width(ull x) { return x == 0 ? 0 : 64 - __builtin_clzll(x); } inline constexpr ull bit_floor(ull x) { return x == 0 ? 0ULL : 1ULL << (bit_width(x) - 1); } inline constexpr ull bit_ceil(ull x) { return x == 0 ? 1ULL : 1ULL << bit_width(x - 1); } inline constexpr ull countr_zero(ull x) { assert(x != 0); return __builtin_ctzll(x); } inline constexpr ull popcount(ull x) { return __builtin_popcountll(x); } inline constexpr bool has_single_bit(ull x) { return popcount(x) == 1; } #else inline constexpr ll countr_zero(ll x) { assert(x != 0); return countr_zero((ull)x); } inline constexpr ll popcount(ll x) { return popcount((ull)x); } inline constexpr bool has_single_bit(ll x) { return has_single_bit((ull)x); } #endif inline constexpr bool btest(ull x, uint k) { return (x >> k) & 1; } template inline void bset(T &x, uint k, bool b = 1) { b ? x |= (1ULL << k) : x &= ~(1ULL << k); } template struct bsubsets { private: T x; public: bsubsets(T x) : x(x) {} struct Iterator { private: T y; bool is_end; const bsubsets &bs; public: Iterator(T y, bool is_end, const bsubsets &bs) : y(y), is_end(is_end), bs(bs) {} T operator*() const { return y; } Iterator& operator++() { if (y == 0) is_end = true; y = (y - 1) & bs.x; return *this; } bool operator!=(const Iterator &other) const { return y != other.y || is_end != other.is_end; } }; Iterator begin() const { return Iterator(x, false, *this); } Iterator end() const { return Iterator(x, true, *this); } }; template struct bsupsets { private: int n; T x; public: bsupsets(int n, T x) : n(n), x(x) {} struct Iterator { private: T y; const bsupsets &bs; public: Iterator(T y, const bsupsets &bs) : y(y), bs(bs) {} T operator*() const { return y; } Iterator& operator++() { y = (y + 1) | bs.x; return *this; } bool operator!=(const Iterator &other) const { return y != other.y; } }; Iterator begin() const { return Iterator(x, *this); } Iterator end() const { return Iterator((T(1) << n) | x, *this); } }; #ifdef LOCAL #include // https://github.com/philip82148/cpp-dump namespace cpp_dump::_detail { } // namespace cpp_dump::_detail #define dump(...) cpp_dump(__VA_ARGS__) namespace cp = cpp_dump; CPP_DUMP_SET_OPTION_GLOBAL(log_label_func, cp::log_label::line()); CPP_DUMP_SET_OPTION_GLOBAL(max_iteration_count, 10000); #define local(...) __VA_ARGS__ #else #define dump(...) #define local(...) #endif namespace fastio { static constexpr uint32_t SIZ = 1 << 17; char ibuf[SIZ]; char obuf[SIZ]; char out[100]; uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SIZ - pir + pil, stdin); pil = 0; if (pir < SIZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd1(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd1(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template void rd1_real(T &x) { string s; rd1(s); x = stod(s); } template void rd1_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed::value || is_same_v) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed::value || is_same_v) { if (minus) x = -x; } } void rd1(int &x) { rd1_integer(x); } void rd1(ll &x) { rd1_integer(x); } void rd1(i128 &x) { rd1_integer(x); } void rd1(uint &x) { rd1_integer(x); } void rd1(ull &x) { rd1_integer(x); } void rd1(u128 &x) { rd1_integer(x); } void rd1(double &x) { rd1_real(x); } void rd1(long double &x) { rd1_real(x); } template void rd1(pair &p) { return rd1(p.first), rd1(p.second); } template void rd1_tuple(T &t) { if constexpr (N < std::tuple_size::value) { auto &x = std::get(t); rd1(x); rd1_tuple(t); } } template void rd1(tuple &tpl) { rd1_tuple(tpl); } template void rd1(array &x) { for (auto &d: x) rd1(d); } template void rd1(vc &x) { for (auto &d: x) rd1(d); } void wt1(const char c) { if (por == SIZ) flush(); obuf[por++] = c; } void wt1(const string s) { for (char c: s) wt1(c); } void wt1(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt1(s[i]); } template void wt1_integer(T x) { if (por > SIZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template void wt1_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt1(s); } template , int> = 0> void wt1(T x) { wt1_integer(x); } void wt1(i128 x) { wt1_integer(x); } void wt1(u128 x) { wt1_integer(x); } void wt1(double x) { wt1_real(x); } void wt1(long double x) { wt1_real(x); } template void wt1(const pair &val) { wt1(val.first); wt1(' '); wt1(val.second); } template void wt1_tuple(const T &t) { if constexpr (N < std::tuple_size::value) { if constexpr (N > 0) { wt1(' '); } const auto x = std::get(t); wt1(x); wt1_tuple(t); } } template void wt1(const tuple &tpl) { wt1_tuple(tpl); } template void wt1(const array &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt1(' '); wt1(val[i]); } } template void wt1(const vector &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt1(' '); wt1(val[i]); } } } // namespace fastio #if defined FAST_IO and not defined LOCAL struct Dummy { Dummy() { atexit(fastio::flush); } } dummy; #endif template istream &operator>>(istream &is, pair &p) { is >> p.first >> p.second; return is; } template istream &operator>>(istream &is, tuple &t) { apply([&](auto &...a) { (is >> ... >> a); }, t); return is; } template istream &operator>>(istream &is, array &a) { for (size_t i = 0; i < n; i++) is >> a[i]; return is; } template istream &operator>>(istream &is, vc &a) { const size_t n = a.size(); for (size_t i = 0; i < n; i++) is >> a[i]; return is; } namespace internal { template void CIN(Ts &...a) { (cin >> ... >> a); } #if defined FAST_IO and not defined LOCAL template void READnodump(Ts &...a) { fastio::read(a...); } #else template void READnodump(Ts &...a) { CIN(a...); } #endif template void READVECnodump(int n, vc &v) { v.resize(n); READnodump(v); } template void READVECnodump(int n, vc &v, vc &...vs) { READVECnodump(n, v), READVECnodump(n, vs...); } template void READVEC2nodump(int n, int m, vvc &v) { v.assign(n, vc(m)); READnodump(v); } template void READVEC2nodump(int n, int m, vvc &v, vvc &...vs) { READVEC2nodump(n, m, v), READVEC2nodump(n, m, vs...); } template void READJAGnodump(int n, vvc &v) { v.resize(n); repi(i, n) { int k; READnodump(k); READVECnodump(k, v[i]); } } template void READJAGnodump(int n, vvc &v, vvc &...vs) { READJAGnodump(n, v), READJAGnodump(n, vs...); } }; // namespace internal #define READ(...) internal::READnodump(__VA_ARGS__); dump(__VA_ARGS__) #define IN(T, ...) T __VA_ARGS__; READ(__VA_ARGS__) #define CHAR(...) IN(char, __VA_ARGS__) #define INT(...) IN(int, __VA_ARGS__) #define LL(...) IN(ll, __VA_ARGS__) #define STR(...) IN(string, __VA_ARGS__) #define ARR(T, n, ...) array __VA_ARGS__; READ(__VA_ARGS__) #define READVEC(...) internal::READVECnodump(__VA_ARGS__); dump(__VA_ARGS__) #define READVEC2(...) internal::READVEC2nodump(__VA_ARGS__); dump(__VA_ARGS__) #define VEC(T, n, ...) vc __VA_ARGS__; READVEC(n, __VA_ARGS__) #define VEC2(T, n, m, ...) vvc __VA_ARGS__; READVEC2(n, m, __VA_ARGS__) #define READJAG(...) internal::READJAGnodump(__VA_ARGS__); dump(__VA_ARGS__) #define JAG(T, n, ...) vvc __VA_ARGS__; READJAG(n, __VA_ARGS__) #ifdef INTERACTIVE #define ENDL endl #else #define ENDL '\n' #endif template ostream &operator<<(ostream &os, const pair &p) { os << p.first << ' ' << p.second; return os; } namespace internal { template void cout_tuple(ostream &os, const T &t) { if constexpr (N < std::tuple_size::value) { if constexpr (N > 0) { os << ' '; } const auto x = std::get(t); os << x; cout_tuple(os, t); } } }; // namespace internal template ostream &operator<<(ostream &os, const tuple &t) { internal::cout_tuple(os, t); return os; } template ostream &operator<<(ostream &os, const array &a) { for (size_t i = 0; i < n; i++) { if (i) os << ' '; os << a[i]; } return os; } template ostream &operator<<(ostream &os, const vc &v) { const size_t n = v.size(); for (size_t i = 0; i < n; i++) { if (i) os << ' '; os << v[i]; } return os; } namespace internal { template void COUTP() { cout << ENDL; } template void COUTP(const T &a) { cout << a << ENDL; } template void COUTP(const T &a, const Ts &...b) { cout << a; (cout << ... << (cout << ' ', b)); cout << ENDL; } }; // namespace internal #if defined FAST_IO and not defined LOCAL #define WRITE fastio::write #define PRINT fastio::print #else #define WRITE internal::COUTW #define PRINT internal::COUTP #endif #define PRINTEXIT(...) do { PRINT(__VA_ARGS__); exit(0); } while (false) #define PRINTRETURN(...) do { PRINT(__VA_ARGS__); return; } while (false) #define PRINTVEXIT(...) do { PRINTV(__VA_ARGS__); exit(0); } while (false) #define PRINTVRETURN(...) do { PRINTV(__VA_ARGS__); return; } while (false) template pair operator+=(pair &a, cauto &b) { a.first += b.first; a.second += b.second; return a; } template pair operator+(pair &a, cauto &b) { return a += b; } template array operator+=(array &a, cauto &b) { for (size_t i = 0; i < n; i++) a[i] += b[i]; return a; } template array operator+(array &a, cauto &b) { return a += b; } namespace internal { template auto tuple_add_impl(auto &a, cauto &b, const index_sequence) { ((get(a) += get(b)), ...); return a; } }; // namespace internal template tuple operator+=(tuple &a, cauto &b) { return internal::tuple_add_impl(a, b, make_index_sequence>>{}); } template tuple operator+(tuple &a, cauto &b) { return a += b; } template array, m> top(const vc> &vt) { const size_t n = vt.size(); array, m> tv; tv.fill(vc(n)); for (size_t i = 0; i < n; i++) for (size_t j = 0; j < m; j++) tv[j][i] = vt[i][j]; return tv; } template vc> top(const array, m> &tv) { if (tv.empty()) return {}; const size_t n = tv[0].size(); vc> vt(n); for (size_t j = 0; j < m; j++) { assert(tv[j].size() == n); for (size_t i = 0; i < n; i++) vt[i][j] = tv[j][i]; } return vt; } template pair, vc> top(const vc> &vt) { const size_t n = vt.size(); pair, vc> tv; tv.first.resize(n), tv.second.resize(n); for (size_t i = 0; i < n; i++) tie(tv.first[i], tv.second[i]) = vt[i]; return tv; } template vc> top(const pair, vc> &tv) { const size_t n = tv.first.size(); assert(n == tv.second.size()); vc> vt(n); for (size_t i = 0; i < n; i++) vt[i] = make_pair(tv.first[i], tv.second[i]); return vt; } namespace internal { template auto vt_to_tv_impl(auto &tv, cauto &t, index_sequence, size_t index) { ((get(tv)[index] = get(t)), ...); } template auto tv_to_vt_impl(cauto &tv, index_sequence, size_t index) { return make_tuple(get(tv)[index]...); } }; template auto top(const vc> &vt) { const size_t n = vt.size(); tuple...> tv; apply([&](auto &...v) { ((v.resize(n)), ...); }, tv); for (size_t i = 0; i < n; i++) internal::vt_to_tv_impl(tv, vt[i], make_index_sequence>{}, i); return tv; } template auto top(const tuple...> &tv) { size_t n = get<0>(tv).size(); apply([&](auto &...v) { ((assert(v.size() == n)), ...); }, tv); vc> vt(n); for (size_t i = 0; i < n; i++) vt[i] = internal::tv_to_vt_impl(tv, index_sequence_for{}, i); return vt; } namespace internal { constexpr ll powmod32_constexpr(ll x, ll n, int m) { if (m == 1) return 0; uint _m = (uint)m; ull r = 1; ull y = safemod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr ll powmod64_constexpr(ll x, ll n, ll m) { if (m == 1) return 0; ull _m = (ull)m; ull r = 1; ull y = safemod(x, m); while (n) { u128 y128(y); if (n & 1) r = (y128 * r) % _m; y = (y128 * y) % _m; n >>= 1; } return r; } constexpr bool isprime32_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; ll d = n - 1; while (d % 2 == 0) d /= 2; constexpr ll bases[3] = {2, 7, 61}; for (ll a : bases) { ll t = d; ll y = powmod32_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) return false; } return true; } constexpr bool isprime64_constexpr(ll n) { if (n <= INT_MAX) return isprime32_constexpr(n); if (n % 2 == 0) return false; ll d = n - 1; while (d % 2 == 0) d /= 2; constexpr ll bases[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; for (ll a : bases) { ll t = d; ll y = powmod64_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = (u128(y) * y) % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) return false; } return true; } template constexpr bool isprime32 = isprime32_constexpr(n); template constexpr bool isprime64 = isprime64_constexpr(n); struct barrett32 { uint m; ull im; explicit barrett32(uint m) : m(m), im((ull)(-1) / m + 1) {} uint umod() const { return m; } uint mul(uint a, uint b) const { ull z = a; z *= b; ull x = (ull)((u128(z)*im) >> 64); ull y = x * m; return (uint)(z - y + (z < y ? m : 0)); } }; inline constexpr ull inv64(ull a) { ull x = a; while (a * x != 1) x *= 2 - a * x; return x; } struct montgomery64odd { ull m, im, sq; // sq = (2^64)^2 % m = (2^128 - m) % m = (-m % 2^128) % m explicit montgomery64odd(ull m) : m(m), im(inv64(m)), sq(-u128(m) % m) {} ull umod() const { return m; } ull reduce(u128 x) const { auto t = (x + u128(m) * (-im * ull(x))) >> 64; if (t >= m) t -= m; return (ull)t; } ull inv_reduce(i128 v) const { return reduce(u128(v % m + m) * sq); } }; struct montgomery64 { ull m, mx, imx, d, q; uint b; explicit montgomery64(ull m) : m(m) { b = countr_zero(m), mx = m >> b; // m == 2^b * mx, mx is odd imx = inv64(mx); d = powmod64_constexpr((mx + 1) / 2, b, mx); // 2^{-b} mod mx u128 sq = -u128(mx) % mx; // 2^128 mod mx q = (1 + (((sq - 1) * d) << b)) % m; } ull umod() const { return m; } ull reduce(u128 x) const { ull p = x & MASK(b); // x mod 2^b x = (x >> b) + p * d; ull y = p << (64 - b); auto t = (x + u128(mx) * (imx * (y - ull(x)))) >> (64 - b); if (t >= m) { t -= m; if (t >= m) t -= m; } return (ull)t; } ull inv_reduce(i128 v) const { return reduce(u128(v % m + m) * q); } }; } template constexpr tuple extgcd(const T &a, const T &b) { if (a == 0 && b == 0) return {0, 0, 0}; // a*x1 + b*y1 == z1 ...(1) // a*x2 + b*y2 == z2 ...(2) T x1 = 1, y1 = 0, z1 = a; T x2 = 0, y2 = 1, z2 = b; while (z2 != 0) { // (1)' = (2) // (2)' = (1) - q*(2) T q = z1 / z2; tie(x1, x2) = make_pair(x2, x1 - q * x2); tie(y1, y2) = make_pair(y2, y1 - q * y2); tie(z1, z2) = make_pair(z2, z1 - q * z2); } if (z1 < 0) x1 = -x1, y1 = -y1, z1 = -z1; return {z1, x1, y1}; } template struct static_modint { using mint = static_modint; private: uint _v; static constexpr uint umod() { return m; } static constexpr bool prime = internal::isprime32; public: static constexpr int mod() { return m; } static_modint() : _v(0) {} template static_modint(T v) { if constexpr (is_signed_v) { ll x = (ll)(v % (ll)(umod())); if (x < 0) x += umod(); _v = (uint)x; } else if constexpr (is_unsigned_v) { _v = (uint)(v % umod()); } else { static_assert(is_signed_v || is_unsigned_v, "Unsupported Type"); } } int val() const { return (int)_v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint res = *this; ++*this; return res; } mint operator--(int) { mint res = *this; --*this; return res; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint &rhs) { ull z = _v; z *= rhs._v; _v = (uint)(z % umod()); return *this; } mint& operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(ll n) const { assert(n >= 0); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v != 0); return pow(umod() - 2); } else { auto [g, x, y] = extgcd(_v, m); assert(g == 1); return x; } } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } }; template struct dynamic_modint { using mint = dynamic_modint; private: uint _v; static internal::barrett32 bt; static uint umod() { return bt.umod(); } public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(m >= 1); bt = internal::barrett32(m); } dynamic_modint() : _v(0) {} template dynamic_modint(T v) { if constexpr (is_signed_v) { ll x = (ll)(v % (ll)(umod())); if (x < 0) x += umod(); _v = (uint)x; } else if constexpr (is_unsigned_v) { _v = (uint)(v % umod()); } else { static_assert(is_signed_v || is_unsigned_v, "Unsupported Type"); } } int val() const { return (int)_v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint res = *this; ++*this; return res; } mint operator--(int) { mint res = *this; --*this; return res; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint &rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(ll n) const { assert(n >= 0); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto [g, x, y] = extgcd(_v, mod()); assert(g == 1); return x; } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } }; template internal::barrett32 dynamic_modint::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; template istream &operator>>(istream &is, static_modint &x) { ll a; is >> a; x = a; return is; } template ostream &operator<<(ostream &os, const static_modint &x) { os << x.val(); return os; } template istream &operator>>(istream &is, dynamic_modint &x) { ll a; is >> a; x = a; return is; } template ostream &operator<<(ostream &os, const dynamic_modint &x) { os << x.val(); return os; } template void rd1(static_modint &x) { ll a; fastio::rd1(a); x = a; } template void wt1(const static_modint &x) { fastio::wt1(x.val()); } template void rd1(dynamic_modint &x) { ll a; fastio::rd1(a); x = a; } template void wt1(const dynamic_modint &x) { fastio::wt1(x.val()); } using mint = modint998244353; template struct static_modint64 { using mint = static_modint64; private: ull _v; static constexpr ull umod() { return m; } static constexpr bool prime = internal::isprime64; public: static constexpr ll mod() { return m; } static_modint64() : _v(0) {} template static_modint64(T v) { if constexpr (is_unsigned_v) { _v = (ull)(v % umod()); } else { ll x = (ll)(v % (ll)(umod())); if (x < 0) x += umod(); _v = (ull)x; } } ll val() const { return (ll)_v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint res = *this; ++*this; return res; } mint operator--(int) { mint res = *this; --*this; return res; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint &rhs) { u128 z = _v; z *= rhs._v; _v = (ull)(z % umod()); return *this; } mint& operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(ll n) const { assert(n >= 0); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v != 0); return pow(umod() - 2); } else { auto [g, x, y] = extgcd(_v, m); assert(g == 1); return x; } } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } }; template struct dynamic_modint64_odd { using mint = dynamic_modint64_odd; private: ull _v; // montgomery expression static internal::montgomery64odd mg; static ull umod() { return mg.umod(); } public: static ll mod() { return (ll)(mg.umod()); } static void set_mod(ll m) { assert(m >= 1 && m % 2 == 1); mg = internal::montgomery64odd(m); } dynamic_modint64_odd() : _v(0) {} dynamic_modint64_odd(i128 v) { _v = mg.inv_reduce(v); } ll val() const { return (ll)mg.reduce(_v); } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint res = *this; ++*this; return res; } mint operator--(int) { mint res = *this; --*this; return res; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint &rhs) { _v = mg.reduce(u128(_v) * rhs._v); return *this; } mint& operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(ll n) const { assert(n >= 0); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto [g, x, y] = extgcd(val(), mod()); assert(g == 1); return x; } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } }; template internal::montgomery64odd dynamic_modint64_odd::mg((1LL << 61) - 1); template struct dynamic_modint64 { using mint = dynamic_modint64; private: ull _v; // montgomery expression static internal::montgomery64 mg; static ull umod() { return mg.umod(); } public: static ll mod() { return (ll)(mg.umod()); } static void set_mod(ll m) { assert(m >= 1); mg = internal::montgomery64(m); } dynamic_modint64() : _v(0) {} dynamic_modint64(i128 v) { _v = mg.inv_reduce(v); } ll val() const { return (ll)mg.reduce(_v); } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint res = *this; ++*this; return res; } mint operator--(int) { mint res = *this; --*this; return res; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint &rhs) { _v = mg.reduce(u128(_v) * rhs._v); return *this; } mint& operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(ll n) const { assert(n >= 0); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto [g, x, y] = extgcd(val(), mod()); assert(g == 1); return x; } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } }; template internal::montgomery64 dynamic_modint64::mg((1LL << 61) - 1); using modint61 = static_modint64<(1LL << 61) - 1>; using modint64_odd = dynamic_modint64_odd<-1>; using modint64 = dynamic_modint64<-1>; template istream &operator>>(istream &is, static_modint64 &x) { ll a; is >> a; x = a; return is; } template ostream &operator<<(ostream &os, const static_modint64 &x) { os << x.val(); return os; } template istream &operator>>(istream &is, dynamic_modint64_odd &x) { ll a; is >> a; x = a; return is; } template ostream &operator<<(ostream &os, const dynamic_modint64_odd &x) { os << x.val(); return os; } template istream &operator>>(istream &is, dynamic_modint64 &x) { ll a; is >> a; x = a; return is; } template ostream &operator<<(ostream &os, const dynamic_modint64 &x) { os << x.val(); return os; } template void rd1(static_modint64 &x) { ll a; fastio::rd1(a); x = a; } template void wt1(const static_modint64 &x) { fastio::wt1(x.val()); } template void rd1(dynamic_modint64_odd &x) { ll a; fastio::rd1(a); x = a; } template void wt1(const dynamic_modint64_odd &x) { fastio::wt1(x.val()); } template void rd1(dynamic_modint64 &x) { ll a; fastio::rd1(a); x = a; } template void wt1(const dynamic_modint64 &x) { fastio::wt1(x.val()); } template struct PrimePower { P p; int e; P pe; PrimePower() {} PrimePower(P p, int e = 1) : p(p), e(e), pe(ipow(p, e)) {} PrimePower(P p, int e, P pe) : p(p), e(e), pe(pe) {} template PrimePower(const PrimePower &pp) : p(pp.p), e(pp.e), pe(pp.pe) {} }; #ifdef LOCAL CPP_DUMP_DEFINE_EXPORT_OBJECT(PrimePower, p, e, pe); CPP_DUMP_DEFINE_EXPORT_OBJECT(PrimePower, p, e, pe); #endif tuple ord_pow_div(ll n, ll m) { assert(m >= 2); if (m == 2) { int e = countr_zero(n); return {e, 1LL << e, n >> e}; } if (n % m != 0) return {0, 1, n}; n /= m; if (n % m != 0) return {1, m, n}; n /= m; ll m2 = m * m; auto [f, m2f, nn] = ord_pow_div(n, m2); int e = 2 + 2 * f; ll me = m2f * m2; if (nn % m == 0) e++, me *= m, nn /= m; return {e, me, nn}; } namespace internal { template bool is_prime_impl(ll n, cauto &bases) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; ll d = (n - 1) >> countr_zero(n - 1); mint::set_mod(n); for (ll a : bases) { ll t = d; mint y = mint(a).pow(t); while (t != n - 1 && y != 1 && y != n - 1) { y *= y; t <<= 1; } if (y != n - 1 && t % 2 == 0) return false; } return true; } }; // namespace internal bool is_prime(ll n) { static constexpr array bases32 = {2, 7, 61}; static constexpr array bases64 = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; if (n <= INT_MAX) { using mint = dynamic_modint; return internal::is_prime_impl(n, bases32); } else { using mint = dynamic_modint64_odd; return internal::is_prime_impl(n, bases64); } } namespace internal { template ll get_prime_factor_impl(ll n) { mint::set_mod(n); int m = pow(n, .125); mt19937 _mt; while (true) { int c = 1 + _mt() % 100; mint x = 2, y = 2, prod = 1; ll g = 1; while (g == 1) { repi(i, m) { x = x * x + c; y = y * y + c, y = y * y + c; prod *= x - y; } g = gcd(prod.val(), n); } if (g == n) continue; if (is_prime(g)) return g; else if (is_prime(n / g)) return n / g; else return get_prime_factor_impl(g); } } ll get_prime_factor(ll n) { if (n <= INT_MAX) { using mint = dynamic_modint; return get_prime_factor_impl(n); } else { using mint = dynamic_modint64_odd; return get_prime_factor_impl(n); } } }; // namespace internal vc> factorize(ll n) { vc> res; repi(p, 2, 100) { if (n % p == 0) { auto [e, pe, nn] = ord_pow_div(n, p); res.emplace_back(PrimePower(p, e, pe)); n = nn; } } while (n > 1) { if (is_prime(n)) { res.emplace_back(n); break; } ll p = internal::get_prime_factor(n); auto [e, pe, nn] = ord_pow_div(n, p); res.emplace_back(PrimePower(p, e, pe)); n = nn; } sort(ALL(res), [&](cauto &pp1, cauto &pp2) { return pp1.p < pp2.p; }); return res; } template struct Monoid { using S = S_; static constexpr auto op = op_; static constexpr auto e = e_; }; template struct Group { using S = S_; static constexpr auto op = op_; static constexpr auto e = e_; static constexpr auto inv = inv_; }; template struct SemiRing { using S = S_; static constexpr auto add = add_; static constexpr auto e0 = e0_; static constexpr auto mul = mul_; static constexpr auto e1 = e1_; }; template struct Ring { using S = S_; static constexpr auto add = add_; static constexpr auto e0 = e0_; static constexpr auto minus = minus_; static constexpr auto mul = mul_; static constexpr auto e1 = e1_; }; template using MonoidOfSemiRingAdd = Monoid; template using MonoidOfSemiRingMul = Monoid; template using GroupOfRingAdd = Group; template struct MonoidAdd { using S = T; static constexpr S op(S a, S b) { return a + b; } static constexpr S e() { return 0; } }; template struct MonoidMul { using S = T; static constexpr S op(S a, S b) { return a * b; } static constexpr S e() { return 1; } }; template struct MonoidMin { using S = T; static constexpr S op(S a, S b) { return min(a, b); } static constexpr S e() { return infty; } }; template struct MonoidMax { using S = T; static constexpr S op(S a, S b) { return max(a, b); } static constexpr S e() { return -infty; } }; template struct GroupAddSub { using S = T; static constexpr S op(S a, S b) { return a + b; } static constexpr S e() { return 0; } static constexpr S inv(S a) { return -a; } }; template struct GroupMulDiv { using S = T; static constexpr S op(S a, S b) { return a * b; } static constexpr S e() { return 1; } static constexpr S inv(S a) { return 1 / a; } }; template struct SemiRingMinPlus { using S = T; static constexpr S add(S a, S b) { return min(a, b); } static constexpr S e0() { return infty; } static constexpr S mul(S a, S b) { return a + b; } static constexpr S e1() { return 0; } }; template struct SemiRingMaxPlus { using S = T; static constexpr S add(S a, S b) { return max(a, b); } static constexpr S e0() { return -infty; } static constexpr S mul(S a, S b) { return a + b; } static constexpr S e1() { return 0; } }; template struct RingAddSubMul { using S = T; static constexpr S add(S a, S b) { return a + b; } static constexpr S minus(S a) { return -a; } static constexpr S e0() { return 0; } static constexpr S mul(S a, S b) { return a * b; } static constexpr S e1() { return 1; } }; template vc zeta_supset(const vc &a) { if (a.empty()) return {}; assert(has_single_bit(a.size())); const int n = countr_zero(a.size()); auto b = a; repi(i, n) repi(s, 1 << n) { if (!btest(s, i)) { int t = s; bset(t, i); b[s] = M::op(b[s], b[t]); } } return b; } void init() {} void main2() { LL(T, M); auto facM = factorize(M); ll K = facM.size(); rep(_, T) { LL(N, B, C, D); VEC(ll, N, A); vc W(N); W.at(0) = B; rep(i, 1, N) W.at(i) = C * W.at(i - 1) + D; dump(W); vc f(1 << K, 1); rep(i, N) { if (M % A.at(i) != 0) continue; ll s = 0; rep(j, K) { ll e2 = get<0>(ord_pow_div(A.at(i), facM.at(j).p)); if (e2 == facM.at(j).e) bset(s, j, 0); else bset(s, j, 1); } f.at(s) *= 1 + W.at(i); dump(i, A.at(i), 1 + W.at(i), s | cp::bin(K)); } dump(f); auto g = zeta_supset>(f); dump(g); mint ans = 0; rep(s, 1 << K) { ans += ipow(-1, popcount(s)) * g.at(s); } if (M == 1) ans--; PRINT(ans); } } void test() { /* local( rep(testcase, 100000) { cout << endl; dump(testcase); // ----- generate cases ----- ll N = 1 + rand() % 5; vl A(N); rep(i, N) A.at(i) = 1 + rand() % 10; // -------------------------- // ------ check output ------ #define INPUT A auto god = naive(INPUT); auto ans = solve(INPUT); if (god != ans) { dump(INPUT); dump(god, ans); exit(0); } // -------------------------- } dump("ok"); ); //*/ } int main() { cauto CERR = [](string val, string color) { string s = "\033[" + color + "m" + val + "\033[m"; #ifdef LOCAL cerr << s; #endif /* コードテストで確認する際にコメントアウトする cerr << val; //*/ }; #if defined FAST_IO and not defined LOCAL CERR("\n[FAST_IO]\n\n", "32"); #endif #if defined FAST_CIO and not defined LOCAL CERR("\n[FAST_CIO]\n\n", "32"); cin.tie(0); ios::sync_with_stdio(false); #endif cout << fixed << setprecision(20); test(); init(); #if defined AOJ_TESTCASE or (defined LOCAL and defined SINGLE_TESTCASE) CERR("\n[AOJ_TESTCASE]\n\n", "35"); while (true) { dump("new testcase"); main2(); } #elif defined SINGLE_TESTCASE CERR("\n[SINGLE_TESTCASE]\n\n", "36"); main2(); #elif defined MULTI_TESTCASE CERR("\n[MULTI_TESTCASE]\n\n", "33"); dump("T"); IN(uint, T); while (T--) { dump("new testcase"); main2(); } #endif }