# Dinic's algorithm from collections import deque class Dinic: def __init__(self, N): self.N = N self.G = [[] for i in range(N)] def add_edge(self, fr, to, cap): forward = [to, cap, None] forward[2] = backward = [fr, 0, forward] self.G[fr].append(forward) self.G[to].append(backward) def add_multi_edge(self, v1, v2, cap1, cap2): edge1 = [v2, cap1, None] edge1[2] = edge2 = [v1, cap2, edge1] self.G[v1].append(edge1) self.G[v2].append(edge2) def bfs(self, s, t): self.level = level = [None]*self.N deq = deque([s]) level[s] = 0 G = self.G while deq: v = deq.popleft() lv = level[v] + 1 for w, cap, _ in G[v]: if cap and level[w] is None: level[w] = lv deq.append(w) return level[t] is not None def dfs(self, v, t, f): if v == t: return f level = self.level for e in self.it[v]: w, cap, rev = e if cap and level[v] < level[w]: d = self.dfs(w, t, min(f, cap)) if d: e[1] -= d rev[1] += d return d return 0 def flow(self, s, t): flow = 0 INF = 10**9 + 7 G = self.G while self.bfs(s, t): *self.it, = map(iter, self.G) f = INF while f: f = self.dfs(s, t, INF) flow += f return flow n, m = map(int, input().split()) XY = [tuple(map(int, input().split())) for _ in range(n)] C = set() for x, y in XY: C.add(x) C.add(y) C = list(C) D = {C[i]: i for i in range(len(C))} k = len(C) mf = Dinic(n+k+2) s = n+k g = n+k+1 for i in range(n): mf.add_edge(s, i, 1) x, y = XY[i] x, y = D[x], D[y] mf.add_edge(i, n+x, 1) mf.add_edge(i, n+y, 1) for i in range(k): mf.add_edge(n+i, g, 1) ans = mf.flow(s, g) print(ans)