# input import sys input = sys.stdin.readline II = lambda : int(input()) MI = lambda : map(int, input().split()) LI = lambda : [int(a) for a in input().split()] SI = lambda : input().rstrip() LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)] LSI = lambda n : [input().rstrip() for _ in range(n)] MI_1 = lambda : map(lambda x:int(x)-1, input().split()) LI_1 = lambda : [int(a)-1 for a in input().split()] def graph(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[int]]: edge = [set() for i in range(n+1+index)] for _ in range(m): a,b = map(int, input().split()) a += index b += index edge[a].add(b) if not dir: edge[b].add(a) return edge def graph_w(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[tuple]]: edge = [set() for i in range(n+1+index)] for _ in range(m): a,b,c = map(int, input().split()) a += index b += index edge[a].add((b,c)) if not dir: edge[b].add((a,c)) return edge mod = 998244353 inf = 1001001001001001001 ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97 ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97 yes = lambda : print("Yes") no = lambda : print("No") yn = lambda flag : print("Yes" if flag else "No") def acc(a:list[int]): sa = [0]*(len(a)+1) for i in range(len(a)): sa[i+1] = a[i] + sa[i] return sa prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1) alplow = "abcdefghijklmnopqrstuvwxyz" alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)} DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]] DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]] DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]] prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59] sys.set_int_max_str_digits(0) # sys.setrecursionlimit(10**6) # import pypyjit # pypyjit.set_param('max_unroll_recursion=-1') from collections import defaultdict from heapq import heappop,heappush from bisect import bisect_left,bisect_right DD = defaultdict BSL = bisect_left BSR = bisect_right def primefact(n:int) -> dict[int,int]: p = 2 res = DD(int) while p*p <= n: cnt = 0 while n%p == 0: n //= p cnt += 1 if cnt: res[p] = cnt p += 1 if n != 1: res[n] = 1 return res from math import gcd p2 = 2**9 p5 = 5**9 p = 10**9 def calc2(x): c = 0 while x%2 == 0: x //= 2 c += 1 return c def calc5(x): c = 0 while x%5 == 0: x //= 5 c += 1 return c def solve2(p,n,m): n %= p m %= p if n == 0: if m == 0: print(1) else: print(-1) return if m == 0: c2n = calc2(n) r = 2**max(0,9-c2n) print(r) return # そうでない時 c2n = calc2(n) c2m = calc2(m) # これでそれぞれnについては9未満 if c2n > c2m: print(-1) return g = 2**c2n p //= g n //= g m //= g # nには素因数としてn,mがない t = pow(-n,-1,p) * m % p print(t) return def solve5(p,n,m): n %= p m %= p if n == 0: if m == 0: print(1) else: print(-1) return if m == 0: c5n = calc5(n) r = 5**max(0,9-c5n) print(r) return # そうでない時 c5n = calc5(n) c5m = calc5(m) # これでそれぞれnについては9未満 if c5n > c5m: print(-1) return g = 5**c5n p //= g n //= g m //= g # nには素因数としてn,mがない t = pow(-n,-1,p) * m % p print(t) return def solve(p): n,m = MI() n %= p m %= p if n == 0: if m == 0: print(1) else: print(-1) return if m == 0: c2n = calc2(n) c5n = calc5(n) r = 2**max(0,9-c2n) r *= 5**max(0,9-c5n) print(r) return # そうでない時 c2n = calc2(n) c5n = calc5(n) c2m = calc2(m) c5m = calc5(m) if c2n >= 9: if c2m >= 9: solve5(p5,n,m) else: print(-1) return if c5n >= 9: if c5m >= 9: solve2(p2,n,m) else: print(-1) return # これでそれぞれnについては9未満 if c2n > c2m or c5n > c5m: print(-1) return g = 2**c2n g *= 5**c5n p //= g n //= g m //= g # nには素因数としてn,mがない t = pow(-n,-1,p) * m % p print(t) return t = II() for i in range(t): solve(p)