# include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; const double pi = acos(-1); template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); } template<class T>constexpr T hinf() { return inf<T>() / 2; } template <typename T_char>T_char TL(T_char cX) { return tolower(cX); } template <typename T_char>T_char TU(T_char cX) { return toupper(cX); } template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; } template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; } int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; } int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; } int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; } ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); }; ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; }; ll MOD(ll x, ll m){return (x%m+m)%m; } ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; } template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>; # define all(qpqpq) (qpqpq).begin(),(qpqpq).end() # define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end()) # define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>) # define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>) # define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++) # define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++) # define len(x) ((ll)(x).size()) # define bit(n) (1LL << (n)) # define pb push_back # define eb emplace_back # define exists(c, e) ((c).find(e) != (c).end()) struct INIT{ INIT(){ std::ios::sync_with_stdio(false); std::cin.tie(0); cout << fixed << setprecision(20); } }INIT; namespace mmrz { void solve(); } int main(){ mmrz::solve(); } #define debug(...) (static_cast<void>(0)) using namespace mmrz; template<typename T> struct dinic { struct edge{ int to; T cap; T rev; }; int n; vector<vector<edge>> G; vector<int> level; vector<int> iter; dinic(int _v) : n(_v), G(n), level(n), iter(n) {} void add_edge(int from, int to, T cap){ G[from].push_back((edge){to, cap, (T)G[to].size()}); G[to].push_back((edge){from, 0, (T)(G[from].size() - 1)}); } void bfs(int s){ for(int i = 0;i < n;i++)level[i] = -1; queue<int> que; level[s] = 0; que.push(s); while(!que.empty()){ int v = que.front(); que.pop(); for(int i = 0;i < (int)G[v].size();i++){ edge &e = G[v][i]; if(e.cap > 0 && level[e.to] < 0){ level[e.to] = level[v] + 1; que.push(e.to); } } } } T dfs(int v, int t, T f){ if(v == t)return f; for(int &i = iter[v];i < (int)G[v].size();i++){ edge &e = G[v][i]; if(e.cap > 0 && level[v] < level[e.to]){ T d = dfs(e.to, t, min(f, e.cap)); if(d > 0){ e.cap -= d; G[e.to][e.rev].cap += d; return d; } } } return 0; } T calc(int s, int t){ T flow = 0; for(;;){ bfs(s); if(level[t] < 0)return flow; for(int i = 0;i < n;i++)iter[i] = 0; int f; while((f = dfs(s, t, inf<T>())) > 0) { flow += f; } } } }; void SOLVE(){ ll n, m; cin >> n >> m; vector<ll> x(n), y(n); rep(i, n)cin >> x[i] >> y[i]; { vector<ll> v; rep(i, n)v.pb(x[i]); rep(i, n)v.pb(y[i]); sort(all(v)); UNIQUE(v); map<ll, int> mp; rep(i, len(v))mp[v[i]] = i; rep(i, n)x[i] = mp[x[i]]; rep(i, n)y[i] = mp[y[i]]; m = len(v); } int S = n+m+1, T = n+m+2; dinic<int> max_flow(n+m+3); rep(i, n){ max_flow.add_edge(S, i, 1); } rep(i, n){ max_flow.add_edge(i, n+x[i], 1); max_flow.add_edge(i, n+y[i], 1); } rep(i, m){ max_flow.add_edge(n+i, T, 1); } cout << max_flow.calc(S, T) << '\n'; } void mmrz::solve(){ int t = 1; //cin >> t; while(t--)SOLVE(); }