#include <bits/stdc++.h> // #include <atcoder/all> using namespace std; // using namespace atcoder; #define rep(i, a, n) for(int i = a; i < n; i++) #define rrep(i, a, n) for(int i = a; i >= n; i--) #define inr(l, x, r) (l <= x && x < r) #define ll long long #define ld long double // using mint = modint1000000007; // using mint = modint998244353; constexpr int IINF = 1001001001; constexpr ll INF = 1e18; template<class t,class u> void chmax(t&a,u b){if(a<b)a=b;} template<class t,class u> void chmin(t&a,u b){if(b<a)a=b;} // 最大フロー問題を解くためのアルゴリズム template <class Cap> class Dinic { int _n; struct _edge { int to, rev; Cap cap; }; vector<pair<int, int>> pos; vector<vector<_edge>> g; public: Dinic(): _n(0) {} explicit Dinic(int n): _n(n), g(n) {} int add_edge(int from, int to, Cap cap){ assert(0 <= from && from < _n); assert(0 <= to && to < _n); assert(0 <= cap); int m = (int)pos.size(); pos.push_back({from, (int)g[from].size()}); int from_id = (int)g[from].size(); int to_id = (int)g[to].size(); if(from == to) to_id++; g[from].push_back(_edge{to, to_id, cap}); g[to].push_back(_edge{from, from_id, 0}); return m; } struct edge{ int from, to; Cap cap, flow; }; edge get_edge(int i){ int m = (int)pos.size(); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{pos[i].first, _e.to, _e.cap+_re.cap, _re.cap}; } vector<edge> edges(){ int m = (int)pos.size(); vector<edge> result; for(int i = 0; i < m; i++){ result.push_back(get_edge(i)); } return result; } void change_edge(int i, Cap new_cap, Cap new_flow){ int m = (int)pos.size(); assert(0 <= i && i < m); assert(0 <= new_flow && new_flow <= new_cap); auto& _e = g[pos[i].first][pos[i].second]; auto& _re = g[_e.to][_e.rev]; _e.cap = new_cap-new_flow; _re.cap = new_flow; } Cap flow(int s, int t){ return flow(s, t, numeric_limits<Cap>::max()); } // s!=t である必要あり Cap flow(int s, int t, Cap flow_limit){ assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); vector<int> level(_n), iter(_n); queue<int> que; auto bfs = [&]()->void { fill(level.begin(), level.end(), -1); level[s] = 0; queue<int>().swap(que); que.push(s); while(!que.empty()){ int v = que.front(); que.pop(); for(auto e: g[v]){ if(e.cap == 0 || level[e.to] >= 0) continue; level[e.to] = level[v]+1; if(e.to == t) return; que.push(e.to); } } }; auto dfs = [&](auto self, int v, Cap up)->Cap { if(v == s) return up; Cap res = 0; int level_v = level[v]; for(int& i = iter[v]; i < (int)g[v].size(); i++){ _edge& e = g[v][i]; if(level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue; Cap d = self(self, e.to, min(up-res, g[e.to][e.rev].cap)); if(d <= 0) continue; g[v][i].cap += d; g[e.to][e.rev].cap -= d; res += d; if(res == up) return res; } level[v] = _n; return res; }; Cap flow = 0; while(flow < flow_limit){ bfs(); if(level[t] == -1) break; fill(iter.begin(), iter.end(), 0); Cap f = dfs(dfs, t, flow_limit-flow); if(!f) break; flow += f; } return flow; } // 最小カットをした上で、頂点 s 側に属する頂点集合を返す vector<bool> min_cut(int s){ vector<bool> visited(_n); queue<int> que; while(!que.empty()){ int p = que.front(); que.pop(); visited[p] = true; for(auto e: g[p]){ if(e.cap && !visited[e.to]){ visited[e.to] = true; que.push(e.to); } } } return visited; } }; int main(){ int n; cin >> n; ll m; cin >> m; vector<ll> x(n), y(n), z; rep(i, 0, n){ cin >> x[i] >> y[i]; z.push_back(x[i]); z.push_back(y[i]); } sort(z.begin(), z.end()); z.erase(unique(z.begin(), z.end()), z.end()); m = z.size(); unordered_map<ll, int> id; rep(i, 0, m) id[z[i]] = i; int s = n+m, t = n+m+1; Dinic<ll> mf(n+m+2); rep(i, 0, n){ mf.add_edge(s, i, 1); mf.add_edge(i, n+id[x[i]], INF); mf.add_edge(i, n+id[y[i]], INF); } rep(i, 0, m){ mf.add_edge(n+id[z[i]], t, 1); } cout << mf.flow(s, t) << endl; return 0; }