// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
// #define INTERACTIVE

#include <bits/stdc++.h>
using namespace std;

namespace templates {
// type
using ll  = long long;
using ull = unsigned long long;
using Pii = pair<int, int>;
using Pil = pair<int, ll>;
using Pli = pair<ll, int>;
using Pll = pair<ll, ll>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
// clang-format off
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));
// clang-format on

// for loop
#define fori1(a) for (ll _ = 0; _ < (a); _++)
#define fori2(i, a) for (ll i = 0; i < (a); i++)
#define fori3(i, a, b) for (ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)

// declare and input
// clang-format off
#define INT(...) int __VA_ARGS__; inp(__VA_ARGS__);
#define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__);
#define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__);
#define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__);
#define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___);
#define VEC(T, A, n) vector<T> A(n); inp(A);
#define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A);
// clang-format on

// const value
const ll MOD1   = 1000000007;
const ll MOD9   = 998244353;
const double PI = acos(-1);

// other macro
#if !defined(RIN__LOCAL) && !defined(INTERACTIVE)
#define endl "\n"
#endif
#define spa ' '
#define len(A) ll(A.size())
#define all(A) begin(A), end(A)

// function
vector<char> stoc(string &S) {
    int n = S.size();
    vector<char> ret(n);
    for (int i = 0; i < n; i++) ret[i] = S[i];
    return ret;
}
string ctos(vector<char> &S) {
    int n      = S.size();
    string ret = "";
    for (int i = 0; i < n; i++) ret += S[i];
    return ret;
}

template <class T>
auto min(const T &a) {
    return *min_element(all(a));
}
template <class T>
auto max(const T &a) {
    return *max_element(all(a));
}
template <class T, class S>
auto clamp(T &a, const S &l, const S &r) {
    return (a > r ? r : a < l ? l : a);
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
    return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
    return (a > b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chclamp(T &a, const S &l, const S &r) {
    auto b = clamp(a, l, r);
    return (a != b ? a = b, 1 : 0);
}

template <typename T>
T sum(vector<T> &A) {
    T tot = 0;
    for (auto a : A) tot += a;
    return tot;
}

template <typename T>
vector<T> compression(vector<T> X) {
    sort(all(X));
    X.erase(unique(all(X)), X.end());
    return X;
}

// input and output
namespace io {
// __int128_t
std::istream &operator>>(std::istream &is, __int128_t &value) {
    std::string str;
    is >> str;
    value    = 0;
    int sign = 1;
    for (size_t i = 0; i < str.size(); i++) {
        if (i == 0 && str[i] == '-') {
            sign = -1;
            continue;
        }
        value = value * 10 + str[i] - '0';
    }
    value *= sign;
    return is;
}

std::ostream &operator<<(std::ostream &dest, __int128_t value) {
    std::ostream::sentry s(dest);
    if (s) {
        __uint128_t tmp = value < 0 ? -value : value;
        char buffer[128];
        char *d = std::end(buffer);
        do {
            --d;
            *d = "0123456789"[tmp % 10];
            tmp /= 10;
        } while (tmp != 0);
        if (value < 0) {
            --d;
            *d = '-';
        }
        int len = std::end(buffer) - d;
        if (dest.rdbuf()->sputn(d, len) != len) {
            dest.setstate(std::ios_base::badbit);
        }
    }
    return dest;
}

// vector<T>
template <typename T>
istream &operator>>(istream &is, vector<T> &A) {
    for (auto &a : A) is >> a;
    return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<T> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        os << A[i];
        if (i != A.size() - 1) os << ' ';
    }
    return os;
}

// vector<vector<T>>
template <typename T>
istream &operator>>(istream &is, vector<vector<T>> &A) {
    for (auto &a : A) is >> a;
    return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<vector<T>> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        os << A[i];
        if (i != A.size() - 1) os << endl;
    }
    return os;
}

// pair<S, T>
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &A) {
    is >> A.first >> A.second;
    return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, pair<S, T> &A) {
    os << A.first << ' ' << A.second;
    return os;
}

// vector<pair<S, T>>
template <typename S, typename T>
istream &operator>>(istream &is, vector<pair<S, T>> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        is >> A[i];
    }
    return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, vector<pair<S, T>> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        os << A[i];
        if (i != A.size() - 1) os << endl;
    }
    return os;
}

// tuple
template <typename T, size_t N>
struct TuplePrint {
    static ostream &print(ostream &os, const T &t) {
        TuplePrint<T, N - 1>::print(os, t);
        os << ' ' << get<N - 1>(t);
        return os;
    }
};
template <typename T>
struct TuplePrint<T, 1> {
    static ostream &print(ostream &os, const T &t) {
        os << get<0>(t);
        return os;
    }
};
template <typename... Args>
ostream &operator<<(ostream &os, const tuple<Args...> &t) {
    TuplePrint<decltype(t), sizeof...(Args)>::print(os, t);
    return os;
}

// io functions
void FLUSH() {
    cout << flush;
}

void print() {
    cout << endl;
}
template <class Head, class... Tail>
void print(Head &&head, Tail &&...tail) {
    cout << head;
    if (sizeof...(Tail)) cout << spa;
    print(std::forward<Tail>(tail)...);
}

template <typename T, typename S>
void prisep(vector<T> &A, S sep) {
    int n = A.size();
    for (int i = 0; i < n; i++) {
        cout << A[i];
        if (i != n - 1) cout << sep;
    }
    cout << endl;
}
template <typename T, typename S>
void priend(T A, S end) {
    cout << A << end;
}
template <typename T>
void prispa(T A) {
    priend(A, spa);
}
template <typename T, typename S>
bool printif(bool f, T A, S B) {
    if (f)
        print(A);
    else
        print(B);
    return f;
}

template <class... T>
void inp(T &...a) {
    (cin >> ... >> a);
}

} // namespace io
using namespace io;

// read graph
vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) {
    vector<vector<int>> edges(n, vector<int>());
    for (int i = 0; i < m; i++) {
        INT(u, v);
        u -= indexed;
        v -= indexed;
        edges[u].push_back(v);
        if (!direct) edges[v].push_back(u);
    }
    return edges;
}
vector<vector<int>> read_tree(int n, int indexed = 1) {
    return read_edges(n, n - 1, false, indexed);
}

template <typename T = long long>
vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) {
    vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>());
    for (int i = 0; i < m; i++) {
        INT(u, v);
        T w;
        inp(w);
        u -= indexed;
        v -= indexed;
        edges[u].push_back({v, w});
        if (!direct) edges[v].push_back({u, w});
    }
    return edges;
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) {
    return read_wedges<T>(n, n - 1, false, indexed);
}

// yes / no
namespace yesno {

// yes
inline bool yes(bool f = true) {
    cout << (f ? "yes" : "no") << endl;
    return f;
}
inline bool Yes(bool f = true) {
    cout << (f ? "Yes" : "No") << endl;
    return f;
}
inline bool YES(bool f = true) {
    cout << (f ? "YES" : "NO") << endl;
    return f;
}

// no
inline bool no(bool f = true) {
    cout << (!f ? "yes" : "no") << endl;
    return f;
}
inline bool No(bool f = true) {
    cout << (!f ? "Yes" : "No") << endl;
    return f;
}
inline bool NO(bool f = true) {
    cout << (!f ? "YES" : "NO") << endl;
    return f;
}

// possible
inline bool possible(bool f = true) {
    cout << (f ? "possible" : "impossible") << endl;
    return f;
}
inline bool Possible(bool f = true) {
    cout << (f ? "Possible" : "Impossible") << endl;
    return f;
}
inline bool POSSIBLE(bool f = true) {
    cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
    return f;
}

// impossible
inline bool impossible(bool f = true) {
    cout << (!f ? "possible" : "impossible") << endl;
    return f;
}
inline bool Impossible(bool f = true) {
    cout << (!f ? "Possible" : "Impossible") << endl;
    return f;
}
inline bool IMPOSSIBLE(bool f = true) {
    cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
    return f;
}

// Alice Bob
inline bool Alice(bool f = true) {
    cout << (f ? "Alice" : "Bob") << endl;
    return f;
}
inline bool Bob(bool f = true) {
    cout << (f ? "Bob" : "Alice") << endl;
    return f;
}

// Takahashi Aoki
inline bool Takahashi(bool f = true) {
    cout << (f ? "Takahashi" : "Aoki") << endl;
    return f;
}
inline bool Aoki(bool f = true) {
    cout << (f ? "Aoki" : "Takahashi") << endl;
    return f;
}

} // namespace yesno
using namespace yesno;

} // namespace templates
using namespace templates;

template <int MOD>
struct Modint {
    int x;
    Modint() : x(0) {}
    Modint(int64_t y) {
        if (y >= 0)
            x = y % MOD;
        else
            x = (y % MOD + MOD) % MOD;
    }

    Modint &operator+=(const Modint &p) {
        x += p.x;
        if (x >= MOD) x -= MOD;
        return *this;
    }

    Modint &operator-=(const Modint &p) {
        x -= p.x;
        if (x < 0) x += MOD;
        return *this;
    }

    Modint &operator*=(const Modint &p) {
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Modint &operator/=(const Modint &p) {
        *this *= p.inverse();
        return *this;
    }

    Modint &operator%=(const Modint &p) {
        assert(p.x == 0);
        return *this;
    }

    Modint operator-() const {
        return Modint(-x);
    }

    Modint &operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Modint &operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Modint operator++(int) {
        Modint result = *this;
        ++*this;
        return result;
    }

    Modint operator--(int) {
        Modint result = *this;
        --*this;
        return result;
    }

    friend Modint operator+(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) += rhs;
    }

    friend Modint operator-(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) -= rhs;
    }

    friend Modint operator*(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) *= rhs;
    }

    friend Modint operator/(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) /= rhs;
    }

    friend Modint operator%(const Modint &lhs, const Modint &rhs) {
        assert(rhs.x == 0);
        return Modint(lhs);
    }

    bool operator==(const Modint &p) const {
        return x == p.x;
    }

    bool operator!=(const Modint &p) const {
        return x != p.x;
    }

    bool operator<(const Modint &rhs) const {
        return x < rhs.x;
    }

    bool operator<=(const Modint &rhs) const {
        return x <= rhs.x;
    }

    bool operator>(const Modint &rhs) const {
        return x > rhs.x;
    }

    bool operator>=(const Modint &rhs) const {
        return x >= rhs.x;
    }

    Modint inverse() const {
        int a = x, b = MOD, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            a -= t * b;
            u -= t * v;
            std::swap(a, b);
            std::swap(u, v);
        }
        return Modint(u);
    }

    Modint pow(int64_t k) const {
        Modint ret(1);
        Modint y(x);
        while (k > 0) {
            if (k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    std::pair<int, int> to_frac(int max_n = 1000) const {
        int y = x;
        for (int i = 1; i <= max_n; i++) {
            if (y <= max_n) {
                return {y, i};
            } else if (MOD - y <= max_n) {
                return {-(MOD - y), i};
            }
            y = (y + x) % MOD;
        }
        return {-1, -1};
    }

    friend std::ostream &operator<<(std::ostream &os, const Modint &p) {
        return os << p.x;
    }

    friend std::istream &operator>>(std::istream &is, Modint &p) {
        int64_t y;
        is >> y;
        p = Modint<MOD>(y);
        return (is);
    }

    static int get_mod() {
        return MOD;
    }
};

struct Arbitrary_Modint {
    int x;
    static int MOD;

    static void set_mod(int mod) {
        MOD = mod;
    }

    Arbitrary_Modint() : x(0) {}
    Arbitrary_Modint(int64_t y) {
        if (y >= 0)
            x = y % MOD;
        else
            x = (y % MOD + MOD) % MOD;
    }

    Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) {
        x += p.x;
        if (x >= MOD) x -= MOD;
        return *this;
    }

    Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) {
        x -= p.x;
        if (x < 0) x += MOD;
        return *this;
    }

    Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) {
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) {
        *this *= p.inverse();
        return *this;
    }

    Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) {
        assert(p.x == 0);
        return *this;
    }

    Arbitrary_Modint operator-() const {
        return Arbitrary_Modint(-x);
    }

    Arbitrary_Modint &operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Arbitrary_Modint &operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Arbitrary_Modint operator++(int) {
        Arbitrary_Modint result = *this;
        ++*this;
        return result;
    }

    Arbitrary_Modint operator--(int) {
        Arbitrary_Modint result = *this;
        --*this;
        return result;
    }

    friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) += rhs;
    }

    friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) -= rhs;
    }

    friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) *= rhs;
    }

    friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) /= rhs;
    }

    friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        assert(rhs.x == 0);
        return Arbitrary_Modint(lhs);
    }

    bool operator==(const Arbitrary_Modint &p) const {
        return x == p.x;
    }

    bool operator!=(const Arbitrary_Modint &p) const {
        return x != p.x;
    }

    bool operator<(const Arbitrary_Modint &rhs) {
        return x < rhs.x;
    }

    bool operator<=(const Arbitrary_Modint &rhs) {
        return x <= rhs.x;
    }

    bool operator>(const Arbitrary_Modint &rhs) {
        return x > rhs.x;
    }

    bool operator>=(const Arbitrary_Modint &rhs) {
        return x >= rhs.x;
    }

    Arbitrary_Modint inverse() const {
        int a = x, b = MOD, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            a -= t * b;
            u -= t * v;
            std::swap(a, b);
            std::swap(u, v);
        }
        return Arbitrary_Modint(u);
    }

    Arbitrary_Modint pow(int64_t k) const {
        Arbitrary_Modint ret(1);
        Arbitrary_Modint y(x);
        while (k > 0) {
            if (k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    std::pair<int, int> to_frac(int max_n = 1000) const {
        int y = x;
        for (int i = 1; i <= max_n; i++) {
            if (y <= max_n) {
                return {y, i};
            } else if (MOD - y <= max_n) {
                return {-(MOD - y), i};
            }
            y = (y + x) % MOD;
        }
        return {-1, -1};
    }

    friend std::ostream &operator<<(std::ostream &os, const Arbitrary_Modint &p) {
        return os << p.x;
    }

    friend std::istream &operator>>(std::istream &is, Arbitrary_Modint &p) {
        int64_t y;
        is >> y;
        p = Arbitrary_Modint(y);
        return (is);
    }

    static int get_mod() {
        return MOD;
    }
};
int Arbitrary_Modint::MOD = 998244353;

using modint9 = Modint<998244353>;
using modint1 = Modint<1000000007>;
using modint  = Arbitrary_Modint;
using mint    = modint9;

std::vector<int> enumerate_primes(int n) {
    if (n <= 1) return {};
    int A[8]  = {1, 7, 11, 13, 17, 19, 23, 29};
    int thres = (n + 29) / 30;
    std::vector<uint8_t> sieve(thres + int(sqrt(n)) + 10, 255);
    sieve[0] ^= 1;

    auto ntoi = [](int i) { return (i >> 2) + (not(~i & 19)); };

    int i    = 0;
    bool flg = 1;
    while (flg) {
        if (sieve[i] != 0) {
            for (int j = 0; j < 8; j++) {
                if (sieve[i] >> j & 1) {
                    long long p = i * 30 + A[j];
                    if (p * p > n) {
                        flg = false;
                        continue;
                    }
                    std::vector<int> q(8), r(8);
                    int s = 0;
                    for (int k = 0; k < 8; k++) {
                        int x = p * (i * 30 + A[k]);
                        q[k]  = x / 30;
                        r[k]  = ntoi(x - 30 * q[k]);
                    }
                    while (q[0] + s < thres) {
                        sieve[q[0] + s] &= ~(uint8_t(1) << r[0]);
                        sieve[q[1] + s] &= ~(uint8_t(1) << r[1]);
                        sieve[q[2] + s] &= ~(uint8_t(1) << r[2]);
                        sieve[q[3] + s] &= ~(uint8_t(1) << r[3]);
                        sieve[q[4] + s] &= ~(uint8_t(1) << r[4]);
                        sieve[q[5] + s] &= ~(uint8_t(1) << r[5]);
                        sieve[q[6] + s] &= ~(uint8_t(1) << r[6]);
                        sieve[q[7] + s] &= ~(uint8_t(1) << r[7]);
                        s += p;
                    }
                }
            }
        }
        i++;
    }
    std::vector<int> primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
    for (int i = 1; i < thres; i++) {
        for (int j = 0; j < 8; j++) {
            if (sieve[i] >> j & 1) primes.push_back(i * 30 + A[j]);
        }
    }

    while (primes.back() > n) primes.pop_back();
    return primes;
}

template <class S, S (*op)(S, S), S (*e)()>
struct segtree {
  public:
    segtree() : segtree(0) {}
    explicit segtree(int n) : segtree(std::vector<S>(n, e())) {};
    explicit segtree(const std::vector<S> &v) : _n(int(v.size())) {
        size = 1;
        log  = 0;
        while (size < _n) {
            log++;
            size <<= 1;
        }
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) update(i);
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();

        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() {
        return d[1];
    }

  private:
    int _n, size, log;
    std::vector<S> d;
    void update(int k) {
        d[k] = op(d[2 * k], d[2 * k + 1]);
    }
};
using S = int;
S op(S l, S r) {
    return l > r ? l : r;
}
S e() {
    return 0;
}

void solve() {
    INT(n);
    VEC(int, A, n);
    const int ma = 200001;
    int M        = 448;
    int M2       = 60;
    assert(M * M > ma);
    assert(M2 * M2 * M2 > ma);
    auto P  = enumerate_primes(M2);
    int lp  = len(P);
    auto P2 = enumerate_primes(M);
    P2      = vector<int>(P2.begin() + len(P), P2.end());
    int lp2 = len(P2);
    vvec(int, cnt, lp, n, 0);
    fori(i, lp) {
        ll p = P[i];
        fori(j, n) {
            while (A[j] % p == 0) {
                A[j] /= p;
                cnt[i][j]++;
            }
        }
    }
    vvec(int, pow_, lp, 0);
    fori(i, lp) {
        ll x = 1;
        while (x < ma) {
            pow_[i].push_back(x);
            x *= P[i];
        }
    }

    vvec(int, cnt2, lp2, n + 1, 0);
    fori(i, lp2) {
        ll p = P2[i];
        fori(j, n) {
            int c = 0;
            while (A[j] % p == 0) {
                A[j] /= p;
                c++;
            }
            cnt2[i][j + 1] = cnt2[i][j];
            if (c == 1) {
                cnt2[i][j + 1]++;
            } else if (c == 2) {
                cnt2[i][j + 1] += n + 10;
            }
        }
    }

    using st = segtree<S, op, e>;
    vec(st, seg, lp);
    fori(i, lp) {
        seg[i] = st(cnt[i]);
    }

    vvec(mint, LR, M, M, 1);
    fori(lp, M) {
        int l = lp * M;
        if (l >= n) break;
        mint x = 1;
        vec(bool, used, ma, false);
        fori(rp, lp + 1, M) {
            int r = rp * M;
            chmin(r, n);
            while (l < r) {
                if (!used[A[l]]) {
                    used[A[l]] = true;
                    x *= A[l];
                }
                l++;
            }
            LR[lp][rp] = x;
            if (r == n) break;
        }
    }

    vec(int, R, n);
    vec(int, L, n);
    {
        vec(int, bef, ma, -1);
        fori(i, n) {
            L[i]      = bef[A[i]];
            bef[A[i]] = i;
        }
    }
    {
        vec(int, nex, ma, n + 1);
        fori(i, n - 1, -1, -1) {
            R[i]      = nex[A[i]];
            nex[A[i]] = i;
        }
    }

    INT(Q);
    ll bef_ans = 1;
    vec(bool, used, ma, false);
    fori(Q) {
        ll l, r;
        if (true) {
            LL(a, b);
            ll x = a * bef_ans % MOD9;
            l    = x % n;
            ll y = b * bef_ans % MOD9;
            r    = y % n;
            if (l > r) swap(l, r);
            r++;
        } else {
            LL(a, b);
            l = a - 1;
            r = b;
        }

        mint ans = 1;
        fori(i, lp) {
            int c = seg[i].prod(l, r);
            ans *= pow_[i][c];
        }

        fori(i, lp2) {
            int c = cnt2[i][r] - cnt2[i][l];
            if (c > n) {
                ans *= P2[i] * P2[i];
            } else if (c > 0) {
                ans *= P2[i];
            }
        }

        int lp  = (l + M - 1) / M;
        int rp  = r / M;
        mint tt = 1;
        if (lp >= rp) {
            fori(i, l, r) {
                if (!used[A[i]]) {
                    used[A[i]] = true;
                    tt *= A[i];
                }
            }
            fori(i, l, r) {
                used[A[i]] = false;
            }
        } else {
            ans *= LR[lp][rp];
            fori(i, l, lp * M) {
                if (R[i] >= rp * M) {
                    tt *= A[i];
                }
            }
            fori(i, rp * M, r) {
                if (L[i] < l) {
                    tt *= A[i];
                }
            }
        }

        ans *= tt;
        print(ans);

        bef_ans = ans.x;
    }
}

int main() {
#ifndef INTERACTIVE
    std::cin.tie(0)->sync_with_stdio(0);
#endif
    // std::cout << std::fixed << std::setprecision(12);
    int t;
    t = 1;
    // std::cin >> t;
    while (t--) solve();
    return 0;
}

// // #pragma GCC target("avx2")
// // #pragma GCC optimize("O3")
// // #pragma GCC optimize("unroll-loops")
// // #define INTERACTIVE
//
// #include "kyopro-cpp/template.hpp"
//
// #include "misc/Modint.hpp"
// using mint = modint9;
//
// #include "math/enumerate_primes.hpp"
//
// #include "data_structure/segTree.hpp"
// using S = int;
// S op(S l, S r) {
//     return l > r ? l : r;
// }
// S e() {
//     return 0;
// }
//
// void solve() {
//     INT(n);
//     VEC(int, A, n);
//     const int ma = 200001;
//     int M        = 448;
//     int M2       = 60;
//     assert(M * M > ma);
//     assert(M2 * M2 * M2 > ma);
//     auto P  = enumerate_primes(M2);
//     int lp  = len(P);
//     auto P2 = enumerate_primes(M);
//     P2      = vector<int>(P2.begin() + len(P), P2.end());
//     int lp2 = len(P2);
//     vvec(int, cnt, lp, n, 0);
//     fori(i, lp) {
//         ll p = P[i];
//         fori(j, n) {
//             while (A[j] % p == 0) {
//                 A[j] /= p;
//                 cnt[i][j]++;
//             }
//         }
//     }
//     vvec(int, pow_, lp, 0);
//     fori(i, lp) {
//         ll x = 1;
//         while (x < ma) {
//             pow_[i].push_back(x);
//             x *= P[i];
//         }
//     }
//
//     vvec(int, cnt2, lp2, n + 1, 0);
//     fori(i, lp2) {
//         ll p = P2[i];
//         fori(j, n) {
//             int c = 0;
//             while (A[j] % p == 0) {
//                 A[j] /= p;
//                 c++;
//             }
//             cnt2[i][j + 1] = cnt2[i][j];
//             if (c == 1) {
//                 cnt2[i][j + 1]++;
//             } else if (c == 2) {
//                 cnt2[i][j + 1] += n + 10;
//             }
//         }
//     }
//
//     using st = segtree<S, op, e>;
//     vec(st, seg, lp);
//     fori(i, lp) {
//         seg[i] = st(cnt[i]);
//     }
//
//     vvec(mint, LR, M, M, 1);
//     fori(lp, M) {
//         int l = lp * M;
//         if (l >= n) break;
//         mint x = 1;
//         vec(bool, used, ma, false);
//         fori(rp, lp + 1, M) {
//             int r = rp * M;
//             chmin(r, n);
//             while (l < r) {
//                 if (!used[A[l]]) {
//                     used[A[l]] = true;
//                     x *= A[l];
//                 }
//                 l++;
//             }
//             LR[lp][rp] = x;
//             if (r == n) break;
//         }
//     }
//
//     vec(int, R, n);
//     vec(int, L, n);
//     {
//         vec(int, bef, ma, -1);
//         fori(i, n) {
//             L[i]      = bef[A[i]];
//             bef[A[i]] = i;
//         }
//     }
//     {
//         vec(int, nex, ma, n + 1);
//         fori(i, n - 1, -1, -1) {
//             R[i]      = nex[A[i]];
//             nex[A[i]] = i;
//         }
//     }
//
//     INT(Q);
//     ll bef_ans = 1;
//     vec(bool, used, ma, false);
//     fori(Q) {
//         ll l, r;
//         if (true) {
//             LL(a, b);
//             ll x = a * bef_ans % MOD9;
//             l    = x % n;
//             ll y = b * bef_ans % MOD9;
//             r    = y % n;
//             if (l > r) swap(l, r);
//             r++;
//         } else {
//             LL(a, b);
//             l = a - 1;
//             r = b;
//         }
//
//         mint ans = 1;
//         fori(i, lp) {
//             int c = seg[i].prod(l, r);
//             ans *= pow_[i][c];
//         }
//
//         fori(i, lp2) {
//             int c = cnt2[i][r] - cnt2[i][l];
//             if (c > n) {
//                 ans *= P2[i] * P2[i];
//             } else if (c > 0) {
//                 ans *= P2[i];
//             }
//         }
//
//         int lp  = (l + M - 1) / M;
//         int rp  = r / M;
//         mint tt = 1;
//         if (lp >= rp) {
//             fori(i, l, r) {
//                 if (!used[A[i]]) {
//                     used[A[i]] = true;
//                     tt *= A[i];
//                 }
//             }
//             fori(i, l, r) {
//                 used[A[i]] = false;
//             }
//         } else {
//             ans *= LR[lp][rp];
//             fori(i, l, lp * M) {
//                 if (R[i] >= rp * M) {
//                     tt *= A[i];
//                 }
//             }
//             fori(i, rp * M, r) {
//                 if (L[i] < l) {
//                     tt *= A[i];
//                 }
//             }
//         }
//
//         ans *= tt;
//         print(ans);
//
//         bef_ans = ans.x;
//     }
// }
//
// int main() {
// #ifndef INTERACTIVE
//     std::cin.tie(0)->sync_with_stdio(0);
// #endif
//     // std::cout << std::fixed << std::setprecision(12);
//     int t;
//     t = 1;
//     // std::cin >> t;
//     while (t--) solve();
//     return 0;
// }