# include using namespace std; using ll = long long; using ull = unsigned long long; const double pi = acos(-1); templateconstexpr T inf() { return ::std::numeric_limits::max(); } templateconstexpr T hinf() { return inf() / 2; } template T_char TL(T_char cX) { return tolower(cX); } template T_char TU(T_char cX) { return toupper(cX); } template bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; } template bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; } int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; } int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; } int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; } ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); }; ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; }; ll MOD(ll x, ll m){return (x%m+m)%m; } ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; } template using dijk = priority_queue, greater>; # define all(qpqpq) (qpqpq).begin(),(qpqpq).end() # define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end()) # define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL) # define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU) # define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++) # define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++) # define len(x) ((ll)(x).size()) # define bit(n) (1LL << (n)) # define pb push_back # define eb emplace_back # define exists(c, e) ((c).find(e) != (c).end()) struct INIT{ INIT(){ std::ios::sync_with_stdio(false); std::cin.tie(0); cout << fixed << setprecision(20); } }INIT; namespace mmrz { void solve(); } int main(){ mmrz::solve(); } #define debug(...) (static_cast(0)) using namespace mmrz; ll __modinv(ll a, ll m){ ll b=m, u=1, v=0; while(b){ ll t = a/b; a -= t*b;swap(a, b); u -= t*v;swap(u, v); } u %= m; if(u < 0)u += m; return u; } ll calc(ll n, ll m, ll mod){ n %= mod; m %= mod; debug(n, m, mod); if(n == 0){ return (m == 0 ? 1 : -1); } if(m == 0){ return lcm(n, mod)/n; } if(n == 1){ return m; } ll g = gcd(n, mod); if(m % g){ return -1; }else if(g != 1){ ll ret = calc(n/g, m/g, mod/g); return ret; }else{ ll inv_mod = __modinv(mod, n); ll M = MOD(-m*inv_mod, n); return (m+M*mod)/n; } } constexpr int md = 1000000000; // void SOLVE(){ // rep(N, 100)rep(M, 100){ // ll n = N; // ll m = M; // if(m != 0)m = md - m; // ll ret = calc(n, m, md); // if(ret != -1)assert(MOD(n * ret, md) == m); // cout << N << " " << M << " " << ret << '\n'; // } // } void SOLVE(){ ll n, m; cin >> n >> m; n %= md; m %= md; if(m != 0)m = md - m; ll ret = calc(n, m, md); if(ret != -1)assert(MOD(n * ret, md) == m); cout << ret << '\n'; } void mmrz::solve(){ int t = 1; cin >> t; while(t--)SOLVE(); }