# include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
const double pi = acos(-1);
template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }
template<class T>constexpr T hinf() { return inf<T>() / 2; }
template <typename T_char>T_char TL(T_char cX) { return tolower(cX); }
template <typename T_char>T_char TU(T_char cX) { return toupper(cX); }
template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }
template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }
int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }
int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }
int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }
ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };
ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };
ll MOD(ll x, ll m){return (x%m+m)%m; }
ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; }
template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;
# define all(qpqpq)           (qpqpq).begin(),(qpqpq).end()
# define UNIQUE(wpwpw)        (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())
# define LOWER(epepe)         transform(all((epepe)),(epepe).begin(),TL<char>)
# define UPPER(rprpr)         transform(all((rprpr)),(rprpr).begin(),TU<char>)
# define rep(i,upupu)         for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)
# define reps(i,opopo)        for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)
# define len(x)                ((ll)(x).size())
# define bit(n)               (1LL << (n))
# define pb push_back
# define eb emplace_back
# define exists(c, e)         ((c).find(e) != (c).end())

struct INIT{
	INIT(){
		std::ios::sync_with_stdio(false);
		std::cin.tie(0);
		cout << fixed << setprecision(20);
	}
}INIT;

namespace mmrz {
	void solve();
}

int main(){
	mmrz::solve();
}
#define debug(...) (static_cast<void>(0))

using namespace mmrz;

void SOLVE(){
	string s;
	cin >> s;
	int n = len(s);
	s += "+0";
	char expr = '+';
	int st = -1;
	rep(i, len(s)){
		if(s[i] == '?' && st == -1)st = i;
		else if(s[i] != '?' && st != -1){
			int L = i-st;
			if(expr == '+'){
				for(int j = st;j < i;j++){
					s[j] = '9';
				}
			}else{
				if(i == 0 || s[st-1] == '-'){
					if(L == 1){
						s[st] = '1';
					}else if(L == 2){
						if(i+1 >= n || s[i+1] == '+' || s[i+1] == '-'){
							s[st] = '1';
							s[st+1] = '1';
						}else{
							s[st] = '1';
							s[st+1] = '+';
						}
					}else{
						s[st] = '1';
						s[st+1] = '+';
						for(int j = st+2;j < i;j++)s[j] = '9';
					}
				}else{
					if(L == 1){
						if(i+1 >= n || s[i+1] == '+' || s[i+1] == '-'){
							s[st] = '1';
						}else{
							s[st] = '+';
							expr = '+';
						}
					}else{
						s[st] = '+';
						expr = '+';
						for(int j = st+1;j < i;j++)s[j] = '9';
					}
				}
			}
			st = -1;
		}
		if(s[i] == '+')expr = '+';
		if(s[i] == '-')expr = '-';
	}
	s = s.substr(0, n);
	cout << s << '\n';
}

void mmrz::solve(){
	int t = 1;
	cin >> t;
	while(t--)SOLVE();
}