import math class Prime: def __init__(self, N: int = 1): self.N = N self.lpf, self.prime = self.makeLpf(N) def getPrimeList(self): """素数リスト(Nまで)""" return self.prime def isPrime(self, x : int): """素数判定""" if x > self.N: return self.isPrimeBig(x) return self.lpf[x] == x def primeFactorization(self, x: int): """素因数分解""" if x > self.N: return self.primeFactrizationBig(x) else: return self.primeFactrizationSmall(x) def makeLpf(self, N: int): """前計算O(N)""" lpf = [0] * (N + 1) prime = [] for i in range(2, N + 1): if lpf[i] == 0: lpf[i] = i prime.append(i) for p in prime: if p > lpf[i]: break j = i * p if j > N: break lpf[j] = p return lpf, prime def isPrimeBig(self, x): """素数判定""" if x <= 1: return False if x == 2: return True if x % 2 == 0: return False if x < 4759123141: return self.millerRabin(x, [2, 7, 61]) return self.millerRabin(x, [2, 325, 9375, 28178, 450775, 9780504, 1795265022]) def millerRabin(self, n, L): """ミラーラビン法""" s = 0 d = n - 1 while d % 2 == 0: s += 1 d >>= 1 for a in L: if n <= a: return True x = pow(a, d, n) if x != 1: for t in range(s): if x == n - 1: break x = x * x % n else: return False return True def primeFactrizationSmall(self, x): """前計算O(N), クエリO(素因数の数)で素因数分解""" p = {} while x != 1: n = self.lpf[x] if n in p: p[n] += 1 else: p[n] = 1 x = x // n return p def primeFactrizationBig(self, x): """O(√x)で素因数分解""" p = {} last = math.floor(x ** 0.5) if x % 2 == 0: p[2] = 1 x //= 2 while x & 1 == 0: x //= 2 p[2] += 1 for i in range(3, last + 1, 2): if x % i == 0: x //= i p[i] = 1 while x % i == 0: x //= i p[i] += 1 if x != 1: p[x] = 1 return p N = input() print(0) P = Prime(1) if len(N) <= 4300: a = int(N) if P.isPrime(a): print("Yes") else: print("No") else: print("No")