using System;
using static System.Console;
using System.Linq;
using System.Collections.Generic;

class Program
{
    static int NN => int.Parse(ReadLine());
    static long[] NList => ReadLine().Split().Select(long.Parse).ToArray();
    static long[][] NArr(long n) => Enumerable.Repeat(0, (int)n).Select(_ => NList).ToArray();
    public static void Main()
    {
        Solve();
    }
    static void Solve()
    {
        var n = NN;
        if (n == 1)
        {
            WriteLine(1);
            return;
        }
        var inv = ModInv(10, n);
        var root = (int)Math.Sqrt(n);
        var set = new HashSet<long>();
        var tmp = (long)inv;
        for (var i = 0; i < root; ++i)
        {
            set.Add(tmp);
            tmp = tmp * inv % n;
        }
        for (var i = 0; i < n; i += root)
        {
            var pr10 = Exp(10, i, n);
            if (set.Contains(pr10))
            {
                tmp = pr10;
                for (var j = i; j < i + root; ++j)
                {
                    if (tmp == inv)
                    {
                        WriteLine(j + 1);
                        return;
                    }
                    tmp = tmp * 10 % n;
                }
            }
        }
    }
    // 拡張ユークリッド互除法 ax + by = gcd(a, b) を満たす x, y を求める
    public static (long g, long x, long y) XGcd(long a, long b)
    {
        long x0 = 1, y0 = 0, x1 = 0, y1 = 1;
        while (b != 0)
        {
            var q = a / b;
            var prevA = a;
            a = b;
            b = prevA % b;
            var prevX0 = x0;
            var prevY0 = y0;
            x0 = x1;
            x1 = prevX0 - q * x1;
            y0 = y1;
            y1 = prevY0 - q * y1;
        }
        return (a, x0, y0);
    }
    // a ^ -1 mod m を求める
    static int ModInv(int a, int mod)
    {
        var (_, x, _) = XGcd(a, mod);
        return (int)((x + mod) % mod);
    }
    static long Exp(long n, long p, int mod)
    {
        long _n = n % mod;
        var _p = p;
        var result = 1L;
        if ((_p & 1) == 1) result *= _n;
        while (_p > 0)
        {
            _n = _n * _n % mod;
            _p >>= 1;
            if ((_p & 1) == 1) result = result * _n % mod;
        }
        return result;
    }
}