class Lagrange: def __init__(self, X, Y): from fractions import Fraction assert len(X) == len(Y) assert len(set(X)) == len(X) N = len(X) self.C = C = [] for i in range(N): res = 1 for j in range(N): if i == j: continue res *= X[i] - X[j] c = Fraction(Y[i], res) C.append(c) self.X, self.Y = X, Y self.d = {x: y for x, y in zip(X, Y)} def __call__(self, x): from fractions import Fraction res = self.d.get(x) if res is not None: return res base = 1 for a in self.X: base *= x-a res = 0 for a, c in zip(self.X, self.C): res += Fraction(base, x-a) * c if res == int(res): return int(res) return res def is_in(x,y,z,a,b,c,d): return a*x+b*y+c*z+d >= 0 MOD = 998_244_353 N, M = map(int, input().split()) ABCD = [] for _ in range(M): a, b, c, d = map(int, input().split()) ABCD.append((a, b, c, d)) def naive(N): C = 15 res = 0 for x in range(-C*N, C*N + 1): for y in range(-C*N, C*N + 1): for z in range(-C*N, C*N + 1): for a, b, c, d in ABCD: if not is_in(x, y, z, a, b, c, d*N): break else: res += 1 return res d = 3 X = [0, 1, 2, 3] L = Lagrange(X, list(map(naive, X))) ans = (-1)**d * L(-N) print(ans%MOD)