#include using namespace std; using pii=pair; using tii=tuple; using qii=tuple; using ll=long long; using ull=unsigned long long; using ld=long double; constexpr int INF=1e9; constexpr ll INF_ll=1e18; #define rep(i,n) for (int i=0;i<(int)(n);i++) #define replr(i,l,r) for (int i=(int)(l);i<(int)(r);i++) #define all(v) v.begin(),v.end() #define len(v) ((int)v.size()) template inline bool chmin(T &a,T b){ if(a>b){ a=b; return true; } return false; } template inline bool chmax(T &a,T b){ if(a(now-start).count(); return ms; } int get_ms_all_program(){ auto now=chrono::system_clock::now(); int ms=chrono::duration_cast(now-program_start).count(); return ms; } } mt19937 mt; uint32_t rand_int(uint32_t r){ //[0,r) assert(r!=0); return ((uint64_t)mt()*r)>>32; } int rand_int(int l,int r){ //[l,r) assert(l> A; #include using mint=atcoder::static_modint; vector>> C; namespace Solver{ struct State{ vector ans; int score=0; int idx=0; void update_score(int max_score){ int j=0; replr(i,N-1-idx,N){ mint now=0; rep(k,idx+1){ now+=ans[k]*C[i][j][k]; } int v=min(abs(A[i][j]-now.val()),mod-abs(A[i][j]-now.val())); chmax(score,v); if(max_score<=score) return; j++; } } State():ans(N,0),idx(0){} void advance(int v,int max_score){ ans[idx]=v; update_score(max_score); idx++; } auto operator<=>(const State &other) const{ return this->score<=>other.score; } }; constexpr int K=250,W=250; void solve(){ priority_queue beam; beam.push(State()); rep(d,N){ vector beam_v; while(!beam.empty()){ beam_v.push_back(beam.top()); beam.pop(); } reverse(all(beam_v)); priority_queue new_beam; rep(w,len(beam_v)){ const auto &state=beam_v[w]; rep(_,K){ int max_score=INF; if(W<=len(new_beam)) max_score=new_beam.top().score; State new_state=state; new_state.advance(rand_int(mod),max_score); if(max_score<=new_state.score) continue; new_beam.push(new_state); while(W> _; A.resize(N); rep(i,N){ A[i].resize(i+1); rep(j,i+1){ cin >> A[i][j]; } } C.assign(N,vector>(N,vector(N,0))); rep(i,N) C[N-1][i][i]=1; for(int i=N-2;0<=i;i--){ rep(j,i+1){ rep(k,N){ C[i][j][k]+=C[i+1][j][k]; C[i][j][k]+=C[i+1][j+1][k]; } } } Solver::solve(); exit(0); }