#if !defined(MYLOCAL)//提出時用テンプレート #pragma GCC optimize("Ofast") #if defined(NDEBUG) #undef NDEBUG #endif #include "bits/stdc++.h" #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #endif using namespace std; using ll=long long; using dd=long double; using pll=pair<ll,ll>; using tll=tuple<ll,ll,ll>; using qll=tuple<ll,ll,ll,ll>; using ll2=array<ll,2>; using ll3=array<ll,3>; using ll4=array<ll,4>; using namespace chrono; constexpr ll INF = 1201001001001001001; struct Fast{ Fast(){ cin.tie(0); ios::sync_with_stdio(false); cout<<fixed<<setprecision(numeric_limits<double>::max_digits10); } } fast; #define EXPAND( x ) x//VS用おまじない #define overload3(_1,_2,_3,name,...) name #define overload4(_1,_2,_3,_4,name,...) name #define overload5(_1,_2,_3,_4,_5,name,...) name #define rep1(N) for (ll dmyi = 0; dmyi < (N); dmyi++) #define rep2(i, N) for (ll i = 0; i < (N); i++) #define rep3(i, S, E) for (ll i = (S); i <= (E); i++) #define rep4(i, S, E, t) for (ll i = (S); i <= (E); i+=(t)) #define rep(...) EXPAND(overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__)) #define dep3(i, E, S) for (ll i = (E); i >= (S); i--) #define dep4(i, E, S, t) for (ll i = (E); i >= (S); i-=(t)) #define dep(...) EXPAND(overload4(__VA_ARGS__, dep4, dep3,_,_)(__VA_ARGS__)) #define ALL1(v) (v).begin(), (v).end() #define ALL2(v,E) (v).begin(), (v).begin()+((E)+1) #define ALL3(v,S,E) (v).begin()+(S), (v).begin()+((E)+1) #define all(...) EXPAND(overload3(__VA_ARGS__, ALL3, ALL2, ALL1)(__VA_ARGS__)) #define RALL1(v) (v).rbegin(), (v).rend() #define RALL2(v,E) (v).rbegin(), (v).rbegin()+((E)+1) #define RALL3(v,S,E) (v).rbegin()+(S), (v).rbegin()+((E)+1) #define rall(...) EXPAND(overload3(__VA_ARGS__, RALL3, RALL2, RALL1)(__VA_ARGS__)) template<class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; }return false; } template<class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; }return false; } template<class T> inline auto maxe(T &&v,ll S,ll E){ return *max_element(all(v,S,E)); } template<class T> inline auto maxe(T &&v){ return *max_element(all(v)); } template<class T> inline auto mine(T &&v,ll S,ll E){ return *min_element(all(v,S,E)); } template<class T> inline auto mine(T &&v){ return *min_element(all(v)); } template<class T,class U=typename remove_reference<T>::type::value_type> inline U sum(T &&v,ll S,ll E) {return accumulate(all(v,S,E),U());} template<class T> inline auto sum(T &&v) {return sum(v,0,v.end()-v.begin()-1);} template<class T> inline ll sz(T &&v){ return (ll)v.size(); } inline ll Ceil(ll a,ll b){ return (a<0) ? -(-a/b) : (a+b-1)/b; } //負もOK inline ll Floor(ll a,ll b){ return -Ceil(-a,b); } //負もOK inline ll Floormod(ll a,ll m){ return Floor(a,m)*m; } //負もOK inline ll Ceilmod(ll a,ll m){ return Ceil(a,m)*m; } //負もOK inline ll Mod(ll a,ll m){ ll r=a%m; if(r<0)r+=m; return r; } //負もOK template<class T> inline T Pow(T a,ll n){ T r=1; for(; n>0; n>>=1,a*=a){ if(n&1)r*=a; } return r; } inline ll Pow(int a,ll n){ return Pow((ll)a,n); } inline ll limitmul(ll a,ll b,ll u){ return b==0||a<=u/b ? a*b : u; }//min(a*b,u) a,b,u≧0 //pair用テンプレート template<class T,class S> inline pair<T,S>& operator+=(pair<T,S> &a,const pair<T,S> &b){ a.first+=b.first; a.second+=b.second; return a; } template<class T,class S> inline pair<T,S>& operator-=(pair<T,S> &a,const pair<T,S> &b){ a.first-=b.first; a.second-=b.second; return a; } template<class T,class S> inline pair<T,S>& operator*=(pair<T,S> &a,const pair<T,S> &b){ a.first*=b.first; a.second*=b.second; return a; } template<class T,class S> inline pair<T,S>& operator/=(pair<T,S> &a,const pair<T,S> &b){ a.first/=b.first; a.second/=b.second; return a; } template<class T,class S> inline pair<T,S>& operator%=(pair<T,S> &a,const pair<T,S> &b){ a.first%=b.first; a.second%=b.second; return a; } template<class T,class S,class R> inline pair<T,S>& operator+=(pair<T,S> &a,R b){ a.first+=b; a.second+=b; return a; } template<class T,class S,class R> inline pair<T,S>& operator-=(pair<T,S> &a,R b){ a.first-=b; a.second-=b; return a; } template<class T,class S,class R> inline pair<T,S>& operator*=(pair<T,S> &a,R b){ a.first*=b; a.second*=b; return a; } template<class T,class S,class R> inline pair<T,S>& operator/=(pair<T,S> &a,R b){ a.first/=b; a.second/=b; return a; } template<class T,class S,class R> inline pair<T,S>& operator%=(pair<T,S> &a,R b){ a.first%=b; a.second%=b; return a; } template<class T,class S,class R> inline pair<T,S> operator+(const pair<T,S> &a,R b){ pair<T,S> c=a; return c+=b; } template<class T,class S,class R> inline pair<T,S> operator-(const pair<T,S> &a,R b){ pair<T,S> c=a; return c-=b; } template<class T,class S,class R> inline pair<T,S> operator*(const pair<T,S> &a,R b){ pair<T,S> c=a; return c*=b; } template<class T,class S,class R> inline pair<T,S> operator/(const pair<T,S> &a,R b){ pair<T,S> c=a; return c/=b; } template<class T,class S,class R> inline pair<T,S> operator%(const pair<T,S> &a,R b){ pair<T,S> c=a; return c%=b; } template<class T,class S,class R> inline pair<T,S> operator-(R b,const pair<T,S> &a){ pair<T,S> c=-a; return c+=b; } template<class T,class S> inline pair<T,S> operator-(const pair<T,S> &a,const pair<T,S> &b){ pair<T,S> c=a; return c-=b; } template<class T,class S> inline pair<T,S> operator-(const pair<T,S> &a){ pair<T,S> c=a; return c*=(-1); } template<class T,class S> inline ostream &operator<<(ostream &os,const pair<T,S> &a){ return os << a.first << ' ' << a.second; } //tuple用テンプレート 出力用のみ template<class T,class S,class R> inline ostream &operator<<(ostream &os,const tuple<T,S,R> &a){ return os << get<0>(a) << ' ' << get<1>(a) << ' ' << get<2>(a); } template<class T,class S,class R,class Q> inline ostream &operator<<(ostream &os,const tuple<T,S,R,Q> &a){ return os << get<0>(a) << ' ' << get<1>(a) << ' ' << get<2>(a) << ' ' << get<3>(a); } //vector用テンプレート template<class T> inline ostream &operator<<(ostream &os,const vector<T> &a){ for (ll i=0; i<(ll)a.size(); i++) os<<(i>0?" ":"")<<a[i]; return os; } //array用テンプレート template<class T,size_t S> inline array<T,S>& operator+=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]+=b[i]; return a; } template<class T,size_t S> inline array<T,S>& operator-=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]-=b[i]; return a; } template<class T,size_t S> inline array<T,S>& operator*=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]*=b[i]; return a; } template<class T,size_t S> inline array<T,S>& operator/=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]/=b[i]; return a; } template<class T,size_t S> inline array<T,S>& operator%=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]%=b[i]; return a; } template<class T,size_t S,class R> inline array<T,S>& operator+=(array<T,S> &a,R b){ for (T &e: a) e+=b; return a; } template<class T,size_t S,class R> inline array<T,S>& operator-=(array<T,S> &a,R b){ for (T &e: a) e-=b; return a; } template<class T,size_t S,class R> inline array<T,S>& operator*=(array<T,S> &a,R b){ for (T &e: a) e*=b; return a; } template<class T,size_t S,class R> inline array<T,S>& operator/=(array<T,S> &a,R b){ for (T &e: a) e/=b; return a; } template<class T,size_t S,class R> inline array<T,S>& operator%=(array<T,S> &a,R b){ for (T &e: a) e%=b; return a; } template<class T,size_t S,class R> inline array<T,S> operator+(const array<T,S> &a,R b){ array<T,S> c=a; return c+=b; } template<class T,size_t S,class R> inline array<T,S> operator-(const array<T,S> &a,R b){ array<T,S> c=a; return c-=b; } template<class T,size_t S,class R> inline array<T,S> operator*(const array<T,S> &a,R b){ array<T,S> c=a; return c*=b; } template<class T,size_t S,class R> inline array<T,S> operator/(const array<T,S> &a,R b){ array<T,S> c=a; return c/=b; } template<class T,size_t S,class R> inline array<T,S> operator%(const array<T,S> &a,R b){ array<T,S> c=a; return c%=b; } template<class T,size_t S,class R> inline array<T,S> operator-(R b,const array<T,S> &a){ array<T,S> c=-a; return c+=b; } template<class T,size_t S> inline array<T,S> operator-(const array<T,S> &a,const array<T,S> &b){ array<T,S> c=a; return c-=b; } template<class T,size_t S> inline array<T,S> operator-(const array<T,S> &a){ array<T,S> c=a; return c*=(-1); } template<class T,size_t S> inline ostream &operator<<(ostream &os,const array<T,S> &a){ for (ll i=0; i<(ll)S; i++) os<<(i>0?" ":"")<<a[i]; return os; } inline struct{ system_clock::time_point st = system_clock::now(); ll operator()()const{return duration_cast<microseconds>(system_clock::now()-st).count()/1000;} } timeget; struct cinutil{ template<class T> static void cin1core(T &a){ cin>>a; } template<class T,class S> static void cin1core(pair<T,S> &a){ cin1core(a.first), cin1core(a.second); } template<class... Args> static void cin1core(tuple<Args...> &a){ cinTplRec<tuple<Args...>,sizeof...(Args)-1>()(a); } template<class T,size_t N> static void cin1core(array<T,N> &a){for(int i=0;i<(int)N;++i) cin>>a[i];} private: template<class Tpl,int i> struct cinTplRec{ void operator()(Tpl &a){ cinTplRec<Tpl,i-1>()(a); cin1core(get<i>(a)); } }; template<class Tpl> struct cinTplRec<Tpl,0>{ void operator()(Tpl &a){ cin1core(get<0>(a)); } }; }; template<class T> T cin1(){ T a; cinutil::cin1core(a); return a; } template<class... Args> tuple<Args...> cins(){ return cin1<tuple<Args...>>(); } template<long long MOD> struct mll_{ using Int = long long; using ll = long long; ll val_=0; /*---- utility ----*/ mll_ &norm(){ return normR().normS(); }//正規化 mll_ &normR(){ val_%=MOD; return *this; }//剰余正規化のみ mll_ &normS(){ if (val_<0) val_+=MOD; return *this; }//正負正規化のみ mll_ &normP(){ if (val_>=MOD) val_-=MOD; return *this; }//加算時正規化 mll_ &invsg(){ val_=-val_; return normS(); }//正負反転 ll modinv(int a){//a^-1 mod MOD int ypre=0,y=1,apre=MOD; while (a>1){ int t=apre/a; apre-=a*t,swap(a,apre); ypre-=y*t,swap(y,ypre); } return y<0 ? y+MOD: y; } /*---- I/F ----*/ constexpr mll_(){} mll_(ll v): val_(v){ norm(); } constexpr mll_(ll v,bool b): val_(v){} //正規化無のコンストラクタ Int val()const{ return (Int)val_; } bool isnone() const { return val_==-1; } //true:値なし mll_ &none() { val_=-1; return *this; } //値なしにする mll_ &inv(){ val_=modinv((int)val_); return *this; } mll_ &operator+=(mll_ b){ val_+=b.val_; return normP(); } mll_ &operator-=(mll_ b){ val_-=b.val_; return normS(); } mll_ &operator*=(mll_ b){ val_*=b.val_; return normR(); } mll_ &operator/=(mll_ b){ return *this*=b.inv(); } mll_ &operator+=(ll b){ return *this+=mll_(b); } mll_ &operator-=(ll b){ return *this-=mll_(b); } mll_ &operator*=(ll b){ return *this*=mll_(b); } mll_ &operator/=(ll b){ return *this/=mll_(b); } mll_ &operator--(int){ return *this-=1; } mll_ &operator++(int){ return *this+=1; } mll_ operator-()const{ return mll_(*this).invsg(); } mll_ operator+(mll_ b)const{ return mll_(*this)+=b; } mll_ operator-(mll_ b)const{ return mll_(*this)-=b; } mll_ operator*(mll_ b)const{ return mll_(*this)*=b; } mll_ operator/(mll_ b)const{ return mll_(*this)/=b; } mll_ operator+(ll b)const{ return mll_(*this)+=b; } mll_ operator-(ll b)const{ return mll_(*this)-=b; } mll_ operator*(ll b)const{ return mll_(*this)*=b; } mll_ operator/(ll b)const{ return mll_(*this)/=b; } friend mll_ operator+(ll a,mll_ b){ return b+a; } friend mll_ operator-(ll a,mll_ b){ return -b+a; } friend mll_ operator*(ll a,mll_ b){ return b*a; } friend mll_ operator/(ll a,mll_ b){ return mll_(a)/b; } bool operator==(mll_ b)const{ return val_==b.val_; } bool operator!=(mll_ b)const{ return val_!=b.val_; } bool operator==(ll b)const{ return *this==mll_(b); } bool operator!=(ll b)const{ return *this!=mll_(b); } friend bool operator==(ll a,mll_ b){ return mll_(a)==b; } friend bool operator!=(ll a,mll_ b){ return mll_(a)!=b; } friend ostream &operator<<(ostream &os,mll_ a){ return os << a.val_; } friend istream &operator>>(istream &is,mll_ &a){ return is >> a.val_; } mll_ pow(ll k)const{ mll_ ret(1,false),a(*this); for (; k>0; k>>=1,a*=a) if (k&1)ret*=a; return ret; } static constexpr int mod() { return MOD; } //enum{ modll=MOD }; }; struct bll{ ll s=0; bll(ll s_=0): s(s_){} bll(int s_): s(s_){} bll(const string &bitstr): s(str2val(bitstr)){} bll(const char *bitstr): s(str2val(bitstr)){} struct ref { bll &b; const ll msk; ref(bll &b_,ll pos):b(b_),msk(1LL<<pos){} operator ll() const { return (b.s&msk)!=0; } ref &operator=(bool x){ if(x) b.s|=msk; else b.s&=~msk; return *this; } }; ref operator[](ll pos){ return ref(*this,pos); } ll operator[](ll pos) const { return (s>>pos)&1; } bll &operator=(int b){ s=b; return *this; } bll &operator=(ll b){ s=b; return *this; } bll &operator=(const string &bitstr){ s=str2val(bitstr); return *this; } bll &operator=(const char *bitstr){ s=str2val(bitstr); return *this; } bll operator++(int){ bll b(*this); s++; return b; } bll operator--(int){ bll b(*this); s--; return b; } operator ll() const noexcept { return s; } bll &operator&=(ll b){ s&=b; return *this; } bll &operator|=(ll b){ s|=b; return *this; } bll &operator^=(ll b){ s^=b; return *this; } bll &operator+=(ll b){ s+=b; return *this; } bll &operator-=(ll b){ s-=b; return *this; } bll &operator<<=(ll i){ s<<=i; return *this; } bll &operator>>=(ll i){ s>>=i; return *this; } bll operator&(ll b)const{ return s&b; } bll operator|(ll b)const{ return s|b; } bll operator^(ll b)const{ return s^b; } bll operator+(ll b)const{ return s+b; } bll operator-(ll b)const{ return s-b; } bll operator<<(ll i)const{ return s<<i; } bll operator>>(ll i)const{ return s>>i; } bll operator&(int b)const{ return s&b; } bll operator|(int b)const{ return s|b; } bll operator^(int b)const{ return s^b; } bll operator+(int b)const{ return s+b; } bll operator-(int b)const{ return s-b; } bll operator<<(int i)const{ return s<<i; } bll operator>>(int i)const{ return s>>i; } bll operator~()const{ return ~s; } bll &oneq (bll msk){ s|= msk.s; return *this; } bll &offeq (bll msk){ s&=~msk.s; return *this; } bll &flipeq(bll msk){ s^= msk.s; return *this; } bll on (bll msk)const{ return bll(s).oneq (msk); } bll off (bll msk)const{ return bll(s).offeq (msk); } bll flip (bll msk)const{ return bll(s).flipeq(msk); } bool any0(bll msk)const{ return ~s&msk.s; } bool any1(bll msk)const{ return s&msk.s; } bool all0(bll msk)const{ return !any1(msk); } bool all1(bll msk)const{ return !any0(msk); } bll &oneq (ll l,ll r){ return oneq (rngmsk(l,r)); } bll &offeq (ll l,ll r){ return offeq (rngmsk(l,r)); } bll &flipeq(ll l,ll r){ return flipeq(rngmsk(l,r)); } bll on (ll l,ll r)const{ return on (rngmsk(l,r)); } bll off (ll l,ll r)const{ return off (rngmsk(l,r)); } bll flip (ll l,ll r)const{ return flip(rngmsk(l,r)); } bool any0(ll l,ll r)const{ return any0(rngmsk(l,r)); } bool any1(ll l,ll r)const{ return any1(rngmsk(l,r)); } bool all0(ll l,ll r)const{ return all0(rngmsk(l,r)); } bool all1(ll l,ll r)const{ return all1(rngmsk(l,r)); } bll &maskeq(ll l,ll r){ s&=rngmsk(l,r); return *this; } bll mask(ll l,ll r)const{ return bll(s).maskeq(l,r); } bll &oneq (ll i){ s|= (1LL<<i); return *this; } bll &offeq (ll i){ s&=~(1LL<<i); return *this; } bll &flipeq(ll i){ s^= (1LL<<i); return *this; } bll on (ll i)const{ return s| (1LL<<i); } bll off (ll i)const{ return s&~(1LL<<i); } bll flip(ll i)const{ return s^ (1LL<<i); } bool contains(ll b)const{ return (s&b)==b; } bll substr(ll l,ll r)const{ return (s&rngmsk(l,r))>>r; } static bll rngmsk(ll l,ll r){ return (1LL<<(l+1))-(1LL<<r); } ll msbit()const{ for(ll x=63,o=-1;;){ ll m=(x+o)/2; if((1LL<<m)<=s) o=m; else x=m; if(x-o==1) return o; } } ll lsbit()const{ return bll(lsb()).msbit(); } ll msb()const{ ll pos=msbit(); return (pos<0) ? 0LL : 1LL<<pos; } ll lsb()const{ return s&-s; } ll count()const{ return bitset<64>(s).count(); } ll count(bll msk)const{ return (msk&s).count(); } ll count(ll l,ll r)const{ return mask(l,r).count(); } vector<ll> idxes()const{ vector<ll> v; for(ll i=0,t=s; t; t>>=1,i++) if(t&1)v.push_back(i); return v; } string to_string(ll wd=-1)const{ wd=max({wd,msbit()+1,1LL}); string ret; for(ll i=wd-1;i>=0;--i) ret += '0'+char((s>>i)&1); return ret; } private: ll str2val(const string &bitstr){ ll val=0, len=(ll)bitstr.size(); for(ll i=0;i<len;++i) val|=ll(bitstr[i]-'0')<<(len-1-i); return val; } }; template<class T> struct SET: set<T>{ using P=set<T>; typename P::iterator it=P::end(); template<class...Args> SET(Args...args): P(args...){} SET(initializer_list<T> a): P(a.begin(),a.end()){} ll size() const { return (ll)P::size(); } bool insert(const T &x){ bool r; tie(it,r)=P::insert(x); return r; } template <class It> void insert(It st,It en){ P::insert(st,en); } void insert(initializer_list<T> a){ P::insert(a.begin(),a.end()); } template<class...A> bool emplace(A&&...a){ bool r; tie(it,r)=P::emplace(a...); return r; } void eraseit(){ it=P::erase(it); } void find(const T &x){ it=P::find(x); } bool contains(const T &x){ return P::count(x)==1; } void lower_bound(const T &x){ it=P::lower_bound(x); } void upper_bound(const T &x){ it=P::upper_bound(x); } bool isend() { return it==P::end(); } T getit() { return *it; } T next() { return *(++it); } T prev() { return *(--it); } bool nextok() { return !isend() && it!=--P::end(); } bool prevok() { return it!=P::begin(); } T front() { return *(it=P::begin()); } T back() { return *(it=--P::end()); } void pop_front(){ front(); eraseit(); } void pop_back(){ back(); eraseit(); } void push_front(const T &x){ it=P::insert(P::begin(),x); } void push_back (const T &x){ it=P::insert(P::end(),x); } void push_out(SET &b){ b.push_front(back()); pop_back(); } void pull_in(SET &b){ push_back(b.front()); b.pop_front(); } }; template<class T> struct cumulativesum{ using Int = long long; using ll = long long; ll n=0; vector<T> c; cumulativesum():c(1){} template<class S> cumulativesum(S &&v): n((ll)v.size()),c(n+1) { Ini(v); } template<class S> void init(S &&v){ n=(ll)v.size(); c.resize(n+1); Ini(v); } void add(T x) { n++; c.push_back(c.back()+x); } T operator()(Int l,Int r){ return c[max(min(n,r+1),0LL)]-c[min(max(0LL,l),n)]; } pair<Int,T> group(T i){ ll g=upper_bound(c.begin(),c.end(),i)-c.begin()-1; T r = g>=0 ? i-c[g] : i; return {g,r}; } T mx(){//区間和max T mn=T(),samx=0; for(ll i=1;i<=n;++i){ chmax(samx,c[i]-mn); chmin(mn,c[i]); } return samx; } template<class S> void Ini(S &&v) { for(ll i=0;i<n;++i) c[i+1]=c[i]+v[i]; } }; template<class S> cumulativesum(S) -> cumulativesum<typename remove_reference<S>::type::value_type>; template<class T> vector<T> powers(T m,ll n){ vector<T> ret(n+1,1); for(ll i=1;i<=n;++i) ret[i]=ret[i-1]*m; return ret; } template <class T> auto runlength(T &&v){ vector<pair<typename remove_reference<T>::type::value_type,ll>> ret; for(auto&&e:v){ if(ret.empty() or ret.back().first!=e) ret.emplace_back(e,1); else ret.back().second++; } return ret; } inline vector<ll> str2num(string &s,char base,const string &etc){ vector<ll> v(s.size()); for(ll i=0;i<(ll)s.size();++i){ size_t pos=etc.find(s[i]); if(pos==etc.npos) v[i]=s[i]-(ll)base; else v[i]=-((ll)pos+1); } return v; } template<class T> struct combination{ vector<T> f,g; ll mxN=0; combination(){} combination(ll maxN): f(maxN+1,1),g(maxN+1),mxN(maxN) { for (ll i=1;i<=mxN;++i) { f[i]=f[i-1]*i; } g[mxN]=1/f[mxN]; for (ll i=mxN;i>=1;--i) { g[i-1]=g[i]*i; } } T P(ll n,ll r){ return (n<0 || r<0 || n<r) ? T(0) : f[n]*g[n-r]; } //nPr T H(ll n,ll r){ return operator()(n+r-1,n-1); }//nHr T inv(ll n) { return f[n-1] * g[n]; } //1/n T fact(ll n) { return f[n]; } //n! T finv(ll n) { return g[n]; } //1/n! T operator()(ll n,ll r){ if (r<0) return 0; if (n<0) return operator()(-n+r-1,r) * ((r&1)?-1:1); //-nCr = (-1)^r * n+r-1Cr if (n<r) return 0; if (n<=mxN) return f[n]*g[n-r]*g[r]; //通常 //n巨大、rかn-r小 if (n-r<r) r=n-r; T bunsi=1,bunbo=1; for (ll i=0;i<r;++i) bunsi*=n-i; for (ll i=0;i<r;++i) bunbo*=i+1; return bunsi/bunbo; } template<class SP> vector<T> CnLnR(long long nL,long long nR,long long r,SP sp){ if (nR-nL+1<=0) return vector<T>(); if (r<0) return vector<T>(nR-nL+1,0); vector<T> v=sp(nL-r+1,nR-r+1,r); for (T& e: v) e*=finv(r); return v; } template<class SP> vector<T> HrLrR(long long n,long long rL,long long rR,SP sp){//r<0不可 return CnLnR(n-1+rL,n-1+rR,n-1,sp); } }; template<class T> struct wrapVector1d{ using S=typename T::value_type; using Int = long long; const T *v; S Ini; wrapVector1d(const T &v_,S ini_=S()):v(&v_),Ini(ini_){} S operator[](Int i)const{ return (i<0 || (Int)v->size()<=i) ? Ini : (*v)[i]; } }; template<class T> struct wrapVector2d{ using S=typename T::value_type; using Int = long long; const vector<T> *v; S Ini; T dmy; wrapVector2d(const vector<T> &v_,S ini_=S()):v(&v_),Ini(ini_){} wrapVector1d<T> operator[](ll i)const{ return (i<0 || (Int)v->size()<=i) ? wrapVector1d(dmy,Ini) : wrapVector1d((*v)[i],Ini); } }; namespace dumpstring{//dummy inline string stringf(const char *format,...){ char bf[1000]; va_list ap; va_start(ap,format); vsprintf(bf,format,ap); va_end(ap); return string(bf); } template <class T> string stringfx(T x,int wd=1){} struct args{ using Int = long long; args(){} args &wd(Int wd__){ (void)wd__; return *this; } args &sx(Int s){ (void)s; return *this; } template<size_t DIM> args &rngs(array<array<Int,DIM>,2> rngs){ return *this; } args &tr(vector<Int> tr__){ (void)tr__; return *this; } args &tr(){ return *this; } args &labels(vector<string> labels__){ (void)labels__; return *this; } args &xrev(){ return *this; } args &yrev(){ return *this; } args &zrev(){ return *this; } args &wrev(){ return *this; } }; template<class NdT> void dumpNd(const string &h,const NdT &fd,const args &p=args(),ostream &os=cerr){} }; using dumpstring::stringf; using dumpstring::stringfx; using dumpstring::args; using dumpstring::dumpNd; #endif//テンプレートend template<class T> struct Vector: vector<T>{ using Int = long long; using vT=vector<T>; using cvT=const vector<T>; using cT=const T; using vT::vT; //親クラスのコンストラクタの隠蔽を回避 using vT::begin,vT::end,vT::insert,vT::erase; auto it(Int i){ return begin()+i; } auto it(Int i)const{ return begin()+i; } Vector(cvT& b):vT(b){} Vector(vT&& b):vT(move(b)){} Vector(int n,cT& x):vT(n,x){}// ┬ 型推論のためラッパー Vector(long long n,cT& x):vT(n,x){} template<class S> Vector(const Vector<S>& b):vT(b.begin(),b.end()){} template<class S> Vector(const vector<S>& b):vT(b.begin(),b.end()){} Vector(Int n,T s,T d){ iota(n,s,d); } Vector(Int n,function<T(Int)> g):vT(n){ for(Int i=0;i<n;++i) (*this)[i]=g(i); } Vector &operator+=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]+=b[i]; return *this; } Vector &operator-=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]-=b[i]; return *this; } Vector &operator*=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]*=b[i]; return *this; } Vector &operator/=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]/=b[i]; return *this; } Vector &operator%=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]%=b[i]; return *this; } Vector &operator+=(const Vector<T> &b){ return *this+=(cvT&)b; } Vector &operator-=(const Vector<T> &b){ return *this-=(cvT&)b; } Vector &operator*=(const Vector<T> &b){ return *this*=(cvT&)b; } Vector &operator/=(const Vector<T> &b){ return *this/=(cvT&)b; } Vector &operator%=(const Vector<T> &b){ return *this%=(cvT&)b; } Vector operator+(cvT &b){ return Vector(*this)+=b; } Vector operator-(cvT &b){ return Vector(*this)-=b; } Vector operator*(cvT &b){ return Vector(*this)*=b; } Vector operator/(cvT &b){ return Vector(*this)/=b; } Vector operator%(cvT &b){ return Vector(*this)%=b; } Vector operator+(const Vector<T> &b){ return Vector(*this)+=b; } Vector operator-(const Vector<T> &b){ return Vector(*this)-=b; } Vector operator*(const Vector<T> &b){ return Vector(*this)*=b; } Vector operator/(const Vector<T> &b){ return Vector(*this)/=b; } Vector operator%(const Vector<T> &b){ return Vector(*this)%=b; } template<class S> Vector &operator+=(S x){ for(T &e: *this) e+=x; return *this; } template<class S> Vector &operator-=(S x){ for(T &e: *this) e-=x; return *this; } template<class S> Vector &operator*=(S x){ for(T &e: *this) e*=x; return *this; } template<class S> Vector &operator/=(S x){ for(T &e: *this) e/=x; return *this; } template<class S> Vector &operator%=(S x){ for(T &e: *this) e%=x; return *this; } template<class S> Vector operator+(S x)const{ return Vector(*this)+=x; } template<class S> Vector operator-(S x)const{ return Vector(*this)-=x; } template<class S> Vector operator*(S x)const{ return Vector(*this)*=x; } template<class S> Vector operator/(S x)const{ return Vector(*this)/=x; } template<class S> Vector operator%(S x)const{ return Vector(*this)%=x; } Vector &operator--(int){ return *this-=T(1); } Vector &operator++(int){ return *this+=T(1); } Vector operator-()const{ return Vector(*this)*=-1; } template<class S> friend Vector operator-(S x,const Vector &a){ return -a+=x; } Vector slice(Int l,Int r,Int d=1)const{ Vector ret; for(Int i=l;(d>0&&i<=r)||(d<0&&r<=i);i+=d) ret.push_back((*this)[i]); return ret; } Int size()const{ return (Int)vT::size(); } Vector &push_back(cT& x,Int n=1){ for(Int i=0;i<n;++i){ vT::push_back(x); } return *this; } Vector &pop_back(Int n=1){ for(Int i=0;i<n;++i){ vT::pop_back(); } return *this; } Vector &push_front(cT& x,Int n=1){ this->insert(0,x,n); return *this; } Vector &pop_front(Int n=1){ erase(0,n-1); return *this; } T pull_back(){ T x=move(vT::back()); vT::pop_back(); return x; } T pull_front(){ T x=move(vT::front()); erase(0); return x; } Vector &insert(Int i,cT& x,Int n=1){ insert(it(i),n,x); return *this; } Vector &insert(Int i,cvT& b){ insert(it(i),b.begin(),b.end()); return *this; } Vector &erase(Int i){ erase(it(i)); return *this; } Vector &erase(Int l,Int r){ erase(it(l),it(r+1)); return *this; } Vector &concat(cvT &b,Int n=1){ cvT B = (&b==this) ? *this : vT{}; for(int i=0;i<n;++i) this->insert(size(),(&b==this)?B:b); return *this; } Vector repeat(Int n){ return Vector{}.concat(*this,n); } Vector &reverse(Int l=0,Int r=-1){ r+=r<0?size():0; std::reverse(it(l),it(r+1)); return *this; } Vector &rotate(Int m){ return rotate(0,size()-1,m); } Vector &rotate(Int l,Int r,Int m){ std::rotate(it(l),it(m),it(r+1)); return *this; } Vector &sort(Int l=0,Int r=-1){ r+=r<0?size():0; std::sort(it(l),it(r+1)); return *this; } Vector &rsort(Int l=0,Int r=-1){ return sort(l,r).reverse(l,r); } template<class Pr> Vector &sort(Pr pr){ return sort(0,size()-1,pr); } template<class Pr> Vector &sort(Int l,Int r,Pr pr){ std::sort(it(l),it(r+1),pr); return *this; } template<int key> Vector &sortbykey(Int l=0,Int r=-1){ r+=r<0?size():0; sort(l,r,[](cT &x,cT &y){return get<key>(x)<get<key>(y);}); return *this; } Vector &uniq(){ erase(unique(begin(),end()),end()); return *this; } Vector &sortq(){ return sort().uniq(); } Vector &fill(cT& x){ return fill(0,size()-1,x); } Vector &fill(Int l,Int r,cT& x){ std::fill(it(l),it(r+1),x); return *this; } template<class S=Int> Vector &iota(Int n,T s=0,S d=1){ vT::resize(n); if(n==0) return *this; (*this)[0]=s; for(int i=1;i<n;++i) (*this)[i]=(*this)[i-1]+d; return *this; } Int count(cT& x)const{ return count(0,size()-1,x); } Int count(Int l,Int r,cT& x)const{ return Int(std::count(it(l),it(r+1),x)); } template<class Pr> Int countif(Pr pr)const{ return countif(0,size()-1,pr); } template<class Pr> Int countif(Int l,Int r,Pr pr)const{ return Int(count_if(it(l),it(r+1),pr)); } Int find(cT& x)const{ return find(0,size()-1,x); } Int find(Int l,Int r,cT& x)const{ return Int(std::find(it(l),it(r+1),x)-begin()); } template<class Pr> Int findif(Pr pr)const{ return findif(0,size()-1,pr); } template<class Pr> Int findif(Int l,Int r,Pr pr)const{ return Int(find_if(it(l),it(r+1),pr)-begin()); } Vector<Int> findall(cT& x)const{ return findall(0,size()-1,x); } Vector<Int> findall(Int l,Int r,cT& x)const{ return findallif(l,r,[&](cT& y){return y==x;}); } template<class Pr> Vector<Int> findallif(Pr pr)const{ return findallif(0,size()-1,pr); } template<class Pr> Vector<Int> findallif(Int l,Int r,Pr pr)const{ Vector<Int> ret; for(Int i=l;i<=r;++i) if(pr((*this)[i])) ret.push_back(i); return ret; } Int flooridx(cT& x)const{ return Int(upper_bound(begin(),end(),x)-begin()-1); } Int ceilidx(cT& x)const{ return Int(lower_bound(begin(),end(),x)-begin()); } Int leftnmof(cT& x)const{ return flooridx(x)+1; } Int rightnmof(cT& x)const{ return size()-ceilidx(x); } bool contains(cT& x)const{ Int i=flooridx(x); return i>=0 && (*this)[i]==x; } template<class Pr> Int flooridx(cT& x,Pr pr)const{ return Int(upper_bound(begin(),end(),x,pr)-begin()-1); } template<class Pr> Int ceilidx(cT& x,Pr pr)const{ return Int(lower_bound(begin(),end(),x,pr)-begin()); } template<class Pr> Int leftnmof(cT& x,Pr pr)const{ return flooridx(x,pr)+1; } template<class Pr> Int rightnmof(cT& x,Pr pr)const{ return size()-ceilidx(x,pr); } template<class Pr> bool contains(cT& x,Pr pr)const{ Int i=flooridx(x,pr); return i>=0 && (*this)[i]==x; } template<class S> using VV = Vector<Vector<S>>; template<class S> using sVV = vector<vector<S>>; template<class S> using VVV = Vector<VV<S>>; template<class S> using sVVV = vector<sVV<S>>; template<class S> using VVVV = Vector<VVV<S>>; template<class S> using sVVVV = vector<sVVV<S>>; template<class S> using VVVVV = Vector<VVVV<S>>; template<class S> using sVVVVV = vector<sVVVV<S>>; auto tostd()const{ return tov(*this); } template <class S> static vector<S> tov(const Vector<S>&v){ return v; } template <class S> static sVV<S> tov(const VV<S> &v){ sVV<S> ret; for(auto&& e:v) ret.push_back(e); return ret; } template <class S> static sVVV<S> tov(const VVV<S> &v){ sVVV<S> ret; for(auto&& e:v) ret.push_back(e.tostd()); return ret; } template <class S> static sVVVV<S> tov(const VVVV<S> &v){ sVVVV<S> ret; for(auto&& e:v) ret.push_back(e.tostd()); return ret; } template <class S> static sVVVVV<S> tov(const VVVVV<S> &v){ sVVVVV<S> ret; for(auto&& e:v) ret.push_back(e.tostd()); return ret; } }; /* vll a={9,8,7},b={1,2,3}; vpll p={{5,3},{7,8},{0,2},}; - -------- 操作系 -------- a+=x a-=x a*=x a/=x a%=x a+x a-x a*x a/x a%x -a x-a a++ a-- //∀i a[i]にxを演算 a+=b a-=b a*=b a/=b a%=b a+b a-b a*b a/b a%b //要素毎演算(同サイズ時) a.push_front(x,n); //n個先頭追加 省略時1 a.push_back(x,n); //n個末尾追加 省略時1 a.pop_front(n); //n個先頭削除 省略時1 a.pop_back(n); //n個末尾削除 省略時1 ll x=a.pull_front(); //pop_front()と同時に値取得 ll x=a.pull_back(); //pop_back()と同時に値取得 a.insert(i,x,n); //a[i]にn個x挿入 n省略時1 a.insert(i,b); //a[i]にvll b挿入 a.erase(i); //a[i]削除 a.erase(l,r); //区間[l,r]削除 a.concat(b); //aにbを結合 b=a可 a.concat(b,n); //aにbをn回結合 b=a可 a.reverse(l,r); //[l,r]を反転 l,r省略可 a.rotate(m); //a[m]を先頭にするrotate a.rotate(l,r,m); //a[m]を先頭にするrotate 範囲[l,r] a.sort(l,r); //[l,r]をソート l,r省略可 a.rsort(l,r); //[l,r]を逆順ソート l,r省略可 p.sort(l,r,[&](pll x,pll y){return x.second<y.second;});//比較関数指定sort l,r省略可 a.uniq(); //連続同値を1つにする a.sortq(); //ソートしてユニーク a.fill(l,r,x); //[l,r]にx代入 l,r省略可 a.iota(n,s,d); //aを等差数列にする 長さn,初項s,公差d vll a(n,s,d); //コンストラクタ版iota vll b=a.slice(st,en,d); //a[st:en:d] d省略時1 vll b=a.repeat(n); //aをn回繰り返す - -------- 検索系 -------- auto pr=[&](auto &x){ return x>0; }; //検索条件 ll m=a.count(x); //xの個数 ll m=a.count(l,r,x); //xの個数in[l,r] ll m=a.countif(pr); //条件満たす個数 ll m=a.countif(l,r,pr); //条件満たす個数in[l,r] ll i=a.find(x); //xの最左位置i ない時N(配列長) ll i=a.find(l,r,x); //xの最左位置i in[l,r] ない時r+1 ll i=a.findif(pr); //条件満たす最左位置i ない時N(配列長) ll i=a.findif(l,r,pr); //条件満たす最左位置i in[l,r] ない時r+1 vll is=a.findall(x); //xの位置i列挙 vll is=a.findall(l,r,x); //xの位置i列挙in[l,r] vll is=a.findallif(pr); //条件満たす位置i列挙 vll is=a.findallif(l,r,pr); //条件満たす位置i列挙in[l,r] - -------- 昇順sort済み配列用 -------- ll i=a.flooridx(x); //x以下の最近傍位置i ない時-1 ll i=a.ceilidx(x); //x以上の最近傍位置i ない時N(配列長) ll m=a.leftnmof(x); //x以下の個数 ll m=a.rightnmof(x); //x以上の個数 bool b=a.contains(x); //xを含む - -------- 比較関数prでsort済みの配列用 -------- auto pr=[&](auto &x,auto &y){ return x>y; }; //降順ソート時 ll i=a.flooridx(x,pr); //x以左の最近傍位置i ない時-1 ll i=a.ceilidx(x,pr); //x以右の最近傍位置i ない時N(配列長) ll m=a.leftnmof(x,pr); //x以左の個数 ll m=a.rightnmof(x,pr); //x以右の個数 bool b=a.contains(x,pr); //xを含む a.concat(b,n).pop_back().rsort().uniq(); //連続適用できる auto aa=a.tostd(); //N次元VectorをN次元vectorに変換(N≦5) */ template<class T> struct wrapv: Vector<T>{ using Int = long long; T def=T(); T defIF=T(); wrapv(const Vector<T> &b):Vector<T>(b){} wrapv(Vector<T> &&b):Vector<T>(move(b)){} wrapv(const std::vector<T> &b):Vector<T>(b){} wrapv(std::vector<T> &&b):Vector<T>(move(b)){} T &operator[](Int i){ return (i<0 || this->size()<=i) ? (defIF=def) : Vector<T>::operator[](i); } void setdef(const T& x){ def=x; } }; /* wrapv v=vll(N,0,1); //vllなどでコンストラクトしてから代入する v.setdef(INF); //範囲外での値セット */ #if 0 #define MODLL (1000000007LL) #else #define MODLL (998244353LL) #endif using mll = mll_<MODLL>; //using mll = fraction; // 1 //0┼2 // 3 左 上 右 下 vector<pll> dxys={{0,-1},{-1,0},{0,1},{1,0},}; namespace SolvingSpace{ template<class T> using vector = Vector<T>; using vll=vector< ll>; using vmll=vector< mll>; using vdd=vector< dd>; using vvll=vector< vll>; using vvmll=vector< vmll>; using vvdd=vector< vdd>; using vvvll=vector< vvll>; using vvvmll=vector< vvmll>; using vvvdd=vector< vvdd>; using vvvvll=vector<vvvll>; using vvvvmll=vector<vvvmll>; using vvvvdd=vector<vvvdd>; using vpll=vector< pll>; using vtll=vector< tll>; using vqll=vector< qll>; using vvpll=vector< vpll>; using vvtll=vector< vtll>; using vvqll=vector< vqll>; using vll2=vector< ll2>; using vll3=vector< ll3>; using vll4=vector< ll4>; using vvll2=vector< vll2>; using vvll3=vector< vll3>; using vvll4=vector< vll4>; using vvvll2=vector<vvll2>; using vvvll3=vector< vvll3>; using vvvll4=vector<vvll4>; using vss=vector<string>; template<class T> vector<T> cinv(ll nm){ return vector<T>(nm,[](ll i){ (void)i; return cin1<T>(); }); } template<class T> vector<vector<T>> cinvv(ll H,ll W){ return vector<vector<T>>(H,[&](ll i){ (void)i; return cinv<T>(W); }); } namespace lazySegtreeUtils{ using Int=long long; using ll=long long; //FirstType<T> Tがpair,tupleのとき第一要素の型を取得 template <class T> concept IsTpl=requires{ typename tuple_size<T>::type; }; template <class T> struct FirstTypeSub { using type=T; }; template <IsTpl T> struct FirstTypeSub<T> { using type=tuple_element_t<0,T>; }; template <class T> using FirstType = typename FirstTypeSub<T>::type; /*---- ACLの遅延セグ木の微改造版 ----*/ //コンストラクタの引数のみで定義できるようにしたもの template <class S,class F,class OP,class MAPP,class COMPO> struct lazySegtreeCore{ S e; F id; OP op; MAPP mapping; COMPO composition; lazySegtreeCore(const S &e,const F &id,OP op,MAPP mapp,COMPO compo) : e(e),id(id),op(op),mapping(mapp),composition(compo) {} void init(int n){ init(std::vector<S>(n,e)); } void init(const std::vector<S>& v){ _n = int(v.size()); size = (int)internal::bit_ceil((unsigned int)(_n)); log = internal::countr_zero((unsigned int)size); d = std::vector<S>(2 * size,e); lz = std::vector<F>(size,id); for(int i = 0; i < _n; i++) d[size + i] = v[i]; for(int i = size - 1; i >= 1; i--) { update(i); } } void set(int p,S x) { assert(0 <= p && p < _n); p += size; for(int i = log; i >= 1; i--) push(p >> i); d[p] = x; for(int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); p += size; for(int i = log; i >= 1; i--) push(p >> i); return d[p]; } S prod(int l,int r) { assert(0 <= l && l <= r && r <= _n); if(l == r) return e; l += size; r += size; for(int i = log; i >= 1; i--) { if(((l >> i) << i) != l) push(l >> i); if(((r >> i) << i) != r) push((r - 1) >> i); } S sml = e,smr = e; while(l < r) { if(l & 1) sml = op(sml,d[l++]); if(r & 1) smr = op(d[--r],smr); l >>= 1; r >>= 1; } return op(sml,smr); } S all_prod() { return d[1]; } void apply(int p,F f) { assert(0 <= p && p < _n); p += size; for(int i = log; i >= 1; i--) push(p >> i); if(f!=id) d[p] = mapping(f,d[p]); for(int i = 1; i <= log; i++) update(p >> i); } void apply(int l,int r,F f) { assert(0 <= l && l <= r && r <= _n); if(l == r) return; l += size; r += size; for(int i = log; i >= 1; i--) { if(((l >> i) << i) != l) push(l >> i); if(((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l,r2 = r; while(l < r) { if(l & 1) all_apply(l++,f); if(r & 1) all_apply(--r,f); l >>= 1; r >>= 1; } l = l2; r = r2; } for(int i = 1; i <= log; i++) { if(((l >> i) << i) != l) update(l >> i); if(((r >> i) << i) != r) update((r - 1) >> i); } } template <bool (*g)(S)> int max_right(int l) { return max_right(l,[](S x) { return g(x); }); } template <class G> int max_right(int l,G g) { assert(0 <= l && l <= _n); assert(g(e)); if(l == _n) return _n; l += size; for(int i = log; i >= 1; i--) push(l >> i); S sm = e; do { while(l % 2 == 0) l >>= 1; if(!g(op(sm,d[l]))) { while(l < size) { push(l); l = (2 * l); if(g(op(sm,d[l]))) { sm = op(sm,d[l]); l++; } } return l - size; } sm = op(sm,d[l]); l++; } while((l & -l) != l); return _n; } template <bool (*g)(S)> int min_left(int r) { return min_left(r,[](S x) { return g(x); }); } template <class G> int min_left(int r,G g) { assert(0 <= r && r <= _n); assert(g(e)); if(r == 0) return 0; r += size; for(int i = log; i >= 1; i--) push((r - 1) >> i); S sm = e; do { r--; while(r > 1 && (r % 2)) r >>= 1; if(!g(op(d[r],sm))) { while(r < size) { push(r); r = (2 * r + 1); if(g(op(d[r],sm))) { sm = op(d[r],sm); r--; } } return r + 1 - size; } sm = op(d[r],sm); } while((r & -r) != r); return 0; } private: int _n,size,log; std::vector<S> d; std::vector<F> lz; void update(int k) { d[k] = op(d[2 * k],d[2 * k + 1]); } void all_apply(int k,F f) { if(f==id) return; d[k] = mapping(f,d[k]); if(k < size) lz[k] = composition(f,lz[k]); } void push(int k) { all_apply(2 * k,lz[k]); all_apply(2 * k + 1,lz[k]); lz[k] = id; } }; /*---- 遅延セグ木コア関数のwrap ----*/ template <class T,class F,class OP,class MAPP,class COMPO> struct LazySegtree{ lazySegtreeCore<T,F,OP,MAPP,COMPO> sgt; ll N=0; ll offset=0; //位置iの値をi-offsetに格納 LazySegtree(const T &e,const F &id,OP op,MAPP f,COMPO c): sgt(e,id,op,f,c){} void init(ll N_){ sgt.init((int)N_); N=N_; } void init(ll l,ll r){ sgt.init(int(r-l+1)); N=r-l+1; offset=l; } void init(const vector<T> &v,ll l=0){ sgt.init(v); N=(ll)v.size(); offset=l; } ll imin()const{ return offset; } ll imax()const{ return N-1+offset; } void set(ll i,const T &x){ sgt.set(int(i-offset),x); } void apply(ll i,const F &y){ sgt.apply(int(i-offset),y); } void apply(ll l,ll r,const F &y){ sgt.apply(int(l-offset),int(r+1-offset),y); } T get(ll i){ return sgt.get(int(i-offset)); } T operator[](ll i){ return get(i); } T prod(ll l,ll r){ return sgt.prod(int(l-offset),int(r+1-offset)); } T get(ll l,ll r){ return prod(l,r); } T allprod(){ return sgt.all_prod(); } template<class IsOK> ll maxRight(ll L,ll R,IsOK isOK){ Int pos=sgt.max_right((int)normalizeL(L),isOK)-1; return normalizeR(R)<pos ? max(R,L-1) : pos+(Int)offset; } template<class IsOK> ll minRight(ll L,ll R,IsOK isOK){ Int pos=maxRight(L,R,[&isOK](const T &prd){return !isOK(prd);})+1; return min(pos,R+1); } template<class IsOK> ll minLeft(ll L,ll R,IsOK isOK){ Int pos=sgt.min_left((int)normalizeR(R)+1,isOK); return pos<normalizeL(L) ? min(L,R+1) : pos+(Int)offset; } template<class IsOK> ll maxLeft(ll L,ll R,IsOK isOK){ Int pos=minLeft(L,R,[&isOK](const T &prd){return !isOK(prd);})-1; return max(pos,L-1); } template<class IsOK> ll Looxx(Int L,Int R,IsOK isOK){ return maxRight(L,R,isOK); } template<class IsOK> ll Lxxoo(Int L,Int R,IsOK isOK){ return minRight(L,R,isOK); } template<class IsOK> ll xxooR(Int L,Int R,IsOK isOK){ return minLeft(L,R,isOK); } template<class IsOK> ll ooxxR(Int L,Int R,IsOK isOK){ return maxLeft(L,R,isOK); } //---- max/minセグ木時専用処理 ---- ll findNextGE(ll i,T x){ static const bool isMax = T(2) < sgt.op(T(1),T(3)); return minRight(i,imax(),[&](T va){return isMax ? va>=x : va<=x;}); } ll findPrevGE(ll i,T x){ static const bool isMax = T(2) < sgt.op(T(1),T(3)); return maxLeft (imin(),i,[&](T va){return isMax ? va>=x : va<=x;}); } ll findPeakL(ll l,ll r){ T peakVal=prod(l,r); if(peakVal==sgt.e) return l; //ピークが単位元のときACLのmax_right動かない return findNextGE(l,peakVal); } ll findPeakR(ll l,ll r){ T peakVal=prod(l,r); if(peakVal==sgt.e) return r; //ピークが単位元のときACLのmin_left動かない return findPrevGE(r,peakVal); } //---- 区間和セグ木時専用処理 ---- Tの先頭要素を和とする using S=FirstType<T>; //Tの先頭要素の型 S getFirst(const T &x){ //Tの先頭要素取得 if constexpr(IsTpl<T>){ return std::get<0>(x); } else return x; } pair<ll,S> floorGroup(ll l,S x){ assert(x>=S(0)); ll r=Looxx(l,imax(),[&](T va){ return getFirst(va)<=x; }); return {r,x-getFirst(prod(l,r))}; } pair<ll,S> ceilGroup(ll l,S x){ assert(x>=S(0)); if(x==S(0)) return {l-1,S(0)}; ll r=Lxxoo(l,imax(),[&](T va){ return x<=getFirst(va); }); S rem = r==imax()+1 ? S(0) : getFirst(prod(l,r))-x; return {r,rem}; } pair<ll,S> floorGroupRev(ll r,S x){ assert(x>=S(0)); ll l=xxooR(imin(),r,[&](T va){ return getFirst(va)<=x; }); return {l,x-getFirst(prod(l,r))}; } pair<ll,S> ceilGroupRev(ll r,S x){ assert(x>=S(0)); if(x==S(0)) return {r+1,S(0)}; ll l=ooxxR(imin(),r,[&](T va){ return x<=getFirst(va); }); S rem = l==imin()-1 ? S(0) : getFirst(prod(l,r))-x; return {l,rem}; } //-------- dump -------- #if 1 void dump()const{ LazySegtree(*this).dumpcore(); }//内部状態を変えずにdump void dumpcore(){ vector<T> v; for(ll i=imin();i<=imax();++i) v.push_back(get(i)); dumpstring::dumpNd("",v,args().sx(imin()).labels({"i"})); } #endif private: ll normalizeL(ll l)const{ return clamp(l-offset,0LL,N); } ll normalizeR(ll r)const{ return clamp(r-offset,-1LL,N-1); } }; //-- 各種遅延セグ木に共通して使う演算など準備 auto maxfn=[](auto x,auto y){ return max(x,y); }; auto minfn=[](auto x,auto y){ return min(x,y); }; auto addfn=[](auto x,auto y){ return x+y; }; auto setfn=[](auto y,auto x){ return y; }; using MAXFN=decltype(maxfn); using MINFN=decltype(minfn); using ADDFN=decltype(addfn); using SETFN=decltype(setfn); auto addfn4Sum=[]<class S>(S y,pair<S,ll> x){ x.first+=y*x.second; return x; }; auto setfn4Sum=[]<class S>(S y,pair<S,ll> x){ x.first =y*x.second; return x; }; using ADDFN4SUM=decltype(addfn4Sum); using SETFN4SUM=decltype(setfn4Sum); using pml=pair<mll,ll>; template <class S> S Id4Set() {//代入の単位元 if constexpr(is_same_v<S,ll>) return INF+9; else if constexpr(is_same_v<S,mll>) return mll().none(); else if constexpr(is_same_v<S,modint998244353>) return modint998244353 ::raw(-1); else if constexpr(is_same_v<S,modint1000000007>) return modint1000000007::raw(-1); else if constexpr(is_same_v<S,dd>) return 1e300; } //-- 区間代入or加算、区間max/min取得 の定義 struct LazySegtreeAddMax: LazySegtree<ll,ll,MAXFN,ADDFN,ADDFN>{ LazySegtreeAddMax():LazySegtree(-INF,0,maxfn,addfn,addfn){} }; struct LazySegtreeAddMin: LazySegtree<ll,ll,MINFN,ADDFN,ADDFN>{ LazySegtreeAddMin():LazySegtree(INF,0,minfn,addfn,addfn){} }; struct LazySegtreeSetMax: LazySegtree<ll,ll,MAXFN,SETFN,SETFN>{ LazySegtreeSetMax():LazySegtree(-INF,INF+9,maxfn,setfn,setfn){} }; struct LazySegtreeSetMin: LazySegtree<ll,ll,MINFN,SETFN,SETFN>{ LazySegtreeSetMin():LazySegtree(INF,INF+9,minfn,setfn,setfn){} }; //-- 区間代入or加算、区間和取得 の定義 template<class T> struct LazySegtreeSetSum: LazySegtree<pair<T,ll>,T,ADDFN,SETFN4SUM,SETFN>{ LazySegtreeSetSum(): LazySegtree<pair<T,ll>,T,ADDFN,SETFN4SUM,SETFN>({0,0},Id4Set<T>(),addfn,setfn4Sum,setfn){} }; template<class T> struct LazySegtreeAddSum: LazySegtree<pair<T,ll>,T,ADDFN,ADDFN4SUM,ADDFN>{ LazySegtreeAddSum(): LazySegtree<pair<T,ll>,T,ADDFN,ADDFN4SUM,ADDFN>({0,0},0,addfn,addfn4Sum,addfn){} }; //-- 双対セグ木一般、区間加算双対セグ木、区間代入双対セグ木 template<class T,class F,class MAPP,class COMPO> struct DualSegtree: LazySegtree<T,F,SETFN,MAPP,COMPO>{ DualSegtree(T,const F &id,MAPP f,COMPO c): LazySegtree<T,F,SETFN,MAPP,COMPO>(T(),id,setfn,f,c){} }; template<class T> struct DualSegtreeAdd: LazySegtree<T,T,SETFN,ADDFN,ADDFN>{ DualSegtreeAdd(): LazySegtree<T,T,SETFN,ADDFN,ADDFN>(T(),T(0),setfn,addfn,addfn){} }; template<class T> struct DualSegtreeSet: LazySegtree<T,T,SETFN,SETFN,SETFN>{ DualSegtreeSet(): LazySegtree<T,T,SETFN,SETFN,SETFN>(T(),Id4Set<T>(),setfn,setfn,setfn){} }; }//namespace using lazySegtreeUtils::LazySegtree; using lazySegtreeUtils::LazySegtreeAddMax; using lazySegtreeUtils::LazySegtreeAddMin; using lazySegtreeUtils::LazySegtreeSetMax; using lazySegtreeUtils::LazySegtreeSetMin; using lazySegtreeUtils::LazySegtreeAddSum; using lazySegtreeUtils::LazySegtreeSetSum; using lazySegtreeUtils::DualSegtree; using lazySegtreeUtils::DualSegtreeAdd; using lazySegtreeUtils::DualSegtreeSet; /* ※初期化を忘れないこと! - ---------- 定義 一般の場合 ------------ . ┌── データ型Tの単位元(実際の単位元でないとだめ) . ↓ ┌ 作用素型Fの単位元(単位元でなくても使わない値ならOK) LazySegtree sgt(-INF,INF+9, [](auto x,auto y){return max(x,y);}, //op T(T,T) [](auto y,auto x){return y;}, //作用 T(F,T) [](auto y,auto x){return y;} //作用素合成 F(F,F) xの後yを作用 ); //-- 初期化 -- sgt.init(N); //i=0~N-1 全て単位元 sgt.init(l,r); //i=l~r 全て単位元 sgt.init(ini); //i=0~N-1 ini[0]~ini[N-1]で初期化 sgt.init(ini,l);//i=l~l+N-1 ini[0]~ini[N-1]で初期化 - ---------- 定義 特別な場合 ------------ LazySegtreeAddMax sgt; sgt.init(ini); //区間加算区間max LazySegtreeAddMin sgt; sgt.init(ini); //区間加算区間min LazySegtreeSetMax sgt; sgt.init(ini); //区間代入区間max LazySegtreeSetMin sgt; sgt.init(ini); //区間代入区間min LazySegtreeAddSum<ll> sgt; sgt.init(ini); //区間加算区間和 T=pair<データ,個数> LazySegtreeSetSum<ll> sgt; sgt.init(ini); //区間代入区間和 T=pair<データ,個数> DualSegtreeSet<ll> sgt; sgt.init(ini); //区間代入双対セグ木 DualSegtreeAdd<ll> sgt; sgt.init(ini); //区間加算双対セグ木 . └ll,mll,mint,dd可 DualSegtree sgt(mll(),mll().none(), //一般の双対セグ木 [](auto y,auto x){return y;},//作用 T(F,T) [](auto y,auto x){return y;} //作用素合成 F(F,F) xの後yを作用 ); - ---- 操作 ---- ll i=sgt.imin(); //iの下限 ll i=sgt.imax(); //iの上限 sgt.set(i,x); //a[i]←x 位置iにx代入 sgt.apply(i,y); //a[i]←f(a[i],y) 位置iに適用関数使用 sgt.apply(l,r,y); //a[l~r]←f(a[l~r],y) [l,r]に適用関数使用 ll x=sgt.get(i); //a[i] 位置iの値 ll x=sgt[i]; //a[i] 位置iの値 ll x=sgt.prod(l,r); //[l,r]の値 ll x=sgt.get(l,r); // 〃 ll x=sgt.allprod(); //全区間の値 - ---- max(min)セグ木のみの操作 ---- ll j=sgt.findNextGE(i,x); //i以降で初めてx以上(以下)になる位置 ll j=sgt.findPrevGE(i,x); //i以前で 〃 ll i=sgt.findPeakL(l,r); //区間[l,r]内max(min)になる最左位置 ll i=sgt.findPeakR(l,r); //区間[l,r]内max(min)になる最右位置 - ---- 区間和セグ木のみの操作 ---- auto[r,rem]=floorGroup(l,x); //Al+A_{l+1}+…+Ar+rem=x なる最大のr auto[r,rem]=ceilGroup(l,x); //Al+A_{l+1}+…+Ar=x+rem なる最小のr auto[l,rem]=floorGroupRev(r,x); //Ar+A_{r-1}+…+Al+rem=x なる最小のl auto[l,rem]=ceilGroupRev(r,x); //Ar+A_{r-1}+…+Al=x+rem なる最大のl - ---- 二分探索 ---- [L,R]内でラムダ式isOKが○(true)になる位置 L,Rは範囲外や逆転も可 - 使用例 ll i=sgt.lxxoo(L,R,[&](ll x){return x>=th;}); // L×→×→×ⓡ○R ll i=sgt.looxx(L,R,[&](ll x){return x<=th;}); // L○→○→ⓡ××R ll i=sgt.ooxxr(L,R,[&](ll x){return x>=th;}); //L○ⓛ×←×←×R ll i=sgt.xxoor(L,R,[&](ll x){return x<=th;}); //L××ⓛ←○←○R - 要件・挙動 lxxoo: isOK([L,r])=○(l≦r≦R)となる最左のr、ないときR+1 要件:isOK(e)=× looxx: isOK([L,r])=○(l≦r≦R)となる最右のr、ないときL-1 要件:isOK(e)=○ ooxxr: isOK([l,R])=○(L≦l≦r)となる最右のl、ないときL-1 要件:isOK(e)=× xxoor: isOK([l,R])=○(L≦l≦r)となる最左のl、ないときR+1 要件:isOK(e)=○ */ void cin2solve() { auto [N,H]=cins<ll,ll>(); auto ab=cinv<pair<ll,ll>>(N); LazySegtreeAddMax sgt; sgt.init(vll(H,0)); //区間加算区間max for(auto&&[a,b]:ab){ sgt.apply(a,b,1); } cout << sgt.allprod() << '\n'; return; } }//SorvingSpace ////////////////////////////////////////// int main(){ #if 1 //SorvingSpace::labo(); SolvingSpace::cin2solve(); //SolvingSpace::generand(); #else ll t; cin >> t; rep(i,0,t-1){ SolvingSpace::cin2solve(); //SolvingSpace::generand(); } #endif cerr << timeget() <<"ms"<< '\n'; return 0; }