import sys # sys.setrecursionlimit(200005) # sys.set_int_max_str_digits(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] # inf = -1-(-1 << 31) inf = -1-(-1 << 62) # md = 10**9+7 md = 998244353 from math import gcd def prime_factorization(a): pp, ee = [], [] if a & 1 == 0: pp += [2] ee += [0] while a & 1 == 0: a >>= 1 ee[-1] += 1 p = 3 while p**2 <= a: if a%p == 0: pp += [p] ee += [0] while a%p == 0: a //= p ee[-1] += 1 p += 2 if a > 1: pp += [a] ee += [1] return pp, ee P,Q = LI() g=gcd(P,Q) P//=g Q//=g pp, ee = prime_factorization(Q) ff = [1] for p, e in zip(pp, ee): a = p nf = [] for _ in range(e*2): for f in ff: nf.append(f*a) a *= p ff += nf # print(ff) ans = [] for f in ff: g = Q*Q//f if (f+Q)%P or (g+Q)%P: continue n = (f+Q)//P m = (g+Q)//P ans.append((n, m)) print(len(ans)) for n, m in ans: print(n, m)