#line 1 "/opt/library/template.hpp"
#include <bits/stdc++.h>
using namespace std;

using ll = long long;
using i64 = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'001'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
#define inf infty<ll>

using pi = pair<ll, ll>;
using vi = vector<ll>;
using vvi = vector<vector<ll>>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

#define rep1(a) for (ll _ = 0; _ < (ll)(a); ++_)
#define rep2(i, a) for (ll i = 0; i < (ll)(a); ++i)
#define rep3(i, a, b) for (ll i = a; i < (ll)(b); ++i)
#define rep4(i, a, b, c) for (ll i = a; i < (ll)(b); i += (c))
#define rrep1(a) for (ll i = (a)-1; i >= (ll)(0); --i)
#define rrep2(i, a) for (ll i = (a)-1; i >= (ll)(0); --i)
#define rrep3(i, a, b) for (ll i = (b)-1; i >= (ll)(a); --i)
#define rrep4(i, a, b, c) for (ll i = (b)-1; i >= (ll)(a); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)

#define all(x) (x).begin(),(x).end()
#define len(x) (ll)(x.size())
#define elif else if
#define bit(x, i) (((x)>>(i))&1)

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll
#define abs llabs

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

ll popcnt(ll x) { return __builtin_popcountll(x); }
ll popcnt(u64 x) { return __builtin_popcountll(x); }
ll popcnt_mod_2(ll x) { return __builtin_parityll(x); }
ll popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
ll topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
ll topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
ll lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
ll lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template<typename T> T SUM(const vector<T> &A) {
  T s = 0; for (auto &&a: A) s += a;
  return s;
}

template <typename T>
T POP(queue<T> &que) {
  T a = que.front();
  que.pop();
  return a;
}
template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
f128 binary_search_real(F check, f128 ok, f128 ng, ll iter = 100) {
  rep(iter) {
    f128 x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  rep(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vc<T> cumsum(vc<U> &A, ll off = 1) {
  ll N = A.size();
  vc<T> B(N + 1);
  rep(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vi argsort(const vector<T> &A) {
  vi ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](ll i, ll j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vi &I) {
  vc<T> B(len(I));
  rep(i, len(I)) B[i] = A[I[i]];
  return B;
}

template<typename T> inline bool chmax(T &a, T b) {return ((a<b)?(a=b,true):(false));}
template<typename T> inline bool chmin(T &a, T b) {return ((a>b)?(a=b,true):(false));}

inline void wt(const char c) { cout << c; }
inline void wt(const string s) { cout << s; }
inline void wt(const char *s) { cout << s; }

template <typename T>
void wt_integer(T x) {
  cout << (x);
}
template <typename T>
void wt_real(T x) {
  cout << fixed << setprecision(15) << (long double)(x);
}
template <typename T>
void wt_integer128(T x) {
  char buf[64];
  char *d = end(buf);
  d--; *d = '\0';
  __uint128_t tmp = ((x < 0)? -x : x);
  do {
    d--; *d = char(tmp%10 + '0'); tmp /= 10;
  } while (tmp);
  if (x < 0) {
    d--; *d = '-';
  }
  cout << d;
}

inline void wt(int x) { wt_integer(x); }
inline void wt(ll x) { wt_integer(x); }
inline void wt(i128 x) { wt_integer128(x); }
inline void wt(u32 x) { wt_integer(x); }
inline void wt(u64 x) { wt_integer(x); }
inline void wt(u128 x) { wt_integer128(x); }
inline void wt(double x) { wt_real(x); }
inline void wt(long double x) { wt_real(x); }
inline void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first); wt(' '); wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
void onez(bool t = 1) { print(t ? 1 : 0); }
#define endl '\n'
#define dump(x) {cerr << #x " = " << x << '\n';}
#line 2 "/opt/library/graph/base.hpp"

template <typename T>
struct Edge {
  ll frm, to;
  T cost;
  ll id;
};

template <typename T = ll, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  ll N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vi indptr;
  vc<edge_type> csr_edges;
  vc<ll> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, ll l, ll r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    ll l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(ll N) : N(N), M(0), prepared(0) {}

  void build(ll n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(ll frm, ll to, T cost = 1, ll i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, ll off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(ll M, bool wt = false, ll off = 1) {
    for (ll m = 0; m < M; ++m) {
      LL(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (ll v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](ll v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vi deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vi, vi> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  ll deg(ll v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  ll in_deg(ll v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  ll out_deg(ll v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      rep(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vi new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  Graph<T, directed> rearrange(vi V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    if (len(used_e) != M) used_e.assign(M, 0);
    ll n = len(V);
    rep(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vi history;
    rep(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (used_e[e.id]) continue;
        ll a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          ll eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    rep(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 3 "main.cpp"

int solve();
int main() {
  cin.tie(nullptr);
  ios_base::sync_with_stdio(false);
  ll T = 1;
  while (!solve()) if (--T == 0) break;
  return 0;
}

int solve() {
  ll X, Y;
  cin >> X >> Y;
  ll XY = X*Y;
  Graph<ll> G(XY);
  rep(i, X) G.add(i, (i+1)%X);
  rep(i, X) rep(j, Y-1) G.add(j*X+i, (j+1)*X+i);
  G.build();
  print(XY, XY);
  rep(i, XY) {
    for (auto e : G[i]) {
      if (e.frm > e.to) continue;
      print(e.frm+1, e.to+1);
    }
  }
  return 0;
}