#include using namespace std; template ostream &operator<<(ostream &s, const pair &v) { s << "(" << v.first << ", " << v.second << ")"; return s; } template requires (!is_convertible_v) istream &operator>>(istream &s, T &&v) { for (auto &&x : v) s >> x; return s; } template requires (!is_convertible_v) ostream &operator<<(ostream &s, T &&v) { for (auto &&x : v) s << x << ' '; return s; } #ifdef LOCAL template void dbg(T... x) { char e{}; ((cerr << e << x, e = ' '), ...); } #define debug(x...) dbg(#x, '=', x, '\n') #else #define debug(...) ((void)0) #endif #define all(v) (v).begin(), (v).end() #define rall(v) (v).rbegin(), (v).rend() #define ff first #define ss second template inline constexpr T inf = numeric_limits::max() / 2; bool chmin(auto &a, auto b) { return (b < a and (a = b, true)); } bool chmax(auto &a, auto b) { return (a < b and (a = b, true)); } using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; using i128 = __int128; using u128 = unsigned __int128; constexpr i64 mod = 998244353; template constexpr T power(T a, i64 b) { T res = 1; for (; b; b /= 2, a *= a) { if (b % 2) { res *= a; } } return res; } template struct MInt { int x; constexpr MInt() : x{} {} constexpr MInt(i64 x) : x{norm(x % getMod())} {} static int Mod; constexpr static int getMod() { if (P > 0) { return P; } else { return Mod; } } constexpr static void setMod(int Mod_) { Mod = Mod_; } constexpr int norm(int x) const { if (x < 0) { x += getMod(); } if (x >= getMod()) { x -= getMod(); } return x; } constexpr int val() const { return x; } explicit constexpr operator int() const { return x; } constexpr MInt operator-() const { MInt res; res.x = norm(getMod() - x); return res; } constexpr MInt inv() const { assert(x != 0); return power(*this, getMod() - 2); } constexpr MInt &operator*=(MInt rhs) & { x = 1LL * x * rhs.x % getMod(); return *this; } constexpr MInt &operator+=(MInt rhs) & { x = norm(x + rhs.x); return *this; } constexpr MInt &operator-=(MInt rhs) & { x = norm(x - rhs.x); return *this; } constexpr MInt &operator/=(MInt rhs) & { return *this *= rhs.inv(); } friend constexpr MInt operator*(MInt lhs, MInt rhs) { MInt res = lhs; res *= rhs; return res; } friend constexpr MInt operator+(MInt lhs, MInt rhs) { MInt res = lhs; res += rhs; return res; } friend constexpr MInt operator-(MInt lhs, MInt rhs) { MInt res = lhs; res -= rhs; return res; } friend constexpr MInt operator/(MInt lhs, MInt rhs) { MInt res = lhs; res /= rhs; return res; } friend constexpr std::istream &operator>>(std::istream &is, MInt &a) { i64 v; is >> v; a = MInt(v); return is; } friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) { return os << a.val(); } friend constexpr bool operator==(MInt lhs, MInt rhs) { return lhs.val() == rhs.val(); } friend constexpr bool operator!=(MInt lhs, MInt rhs) { return lhs.val() != rhs.val(); } }; template<> int MInt<0>::Mod = 1; template constexpr MInt

CInv = MInt

(V).inv(); constexpr int P = 998244353; using Z = MInt

; std::vector rev; template std::vector> roots{0, 1}; template constexpr MInt

findPrimitiveRoot() { MInt

i = 2; int k = __builtin_ctz(P - 1); while (true) { if (power(i, (P - 1) / 2) != 1) { break; } i += 1; } return power(i, (P - 1) >> k); } template constexpr MInt

primitiveRoot = findPrimitiveRoot

(); template<> constexpr MInt<998244353> primitiveRoot<998244353> {31}; template constexpr void dft(std::vector> &a) { int n = a.size(); if (int(rev.size()) != n) { int k = __builtin_ctz(n) - 1; rev.resize(n); for (int i = 0; i < n; i++) { rev[i] = rev[i >> 1] >> 1 | (i & 1) << k; } } for (int i = 0; i < n; i++) { if (rev[i] < i) { std::swap(a[i], a[rev[i]]); } } if (roots

.size() < n) { int k = __builtin_ctz(roots

.size()); roots

.resize(n); while ((1 << k) < n) { auto e = power(primitiveRoot

, 1 << (__builtin_ctz(P - 1) - k - 1)); for (int i = 1 << (k - 1); i < (1 << k); i++) { roots

[2 * i] = roots

[i]; roots

[2 * i + 1] = roots

[i] * e; } k++; } } for (int k = 1; k < n; k *= 2) { for (int i = 0; i < n; i += 2 * k) { for (int j = 0; j < k; j++) { MInt

u = a[i + j]; MInt

v = a[i + j + k] * roots

[k + j]; a[i + j] = u + v; a[i + j + k] = u - v; } } } } template constexpr void idft(std::vector> &a) { int n = a.size(); std::reverse(a.begin() + 1, a.end()); dft(a); MInt

inv = (1 - P) / n; for (int i = 0; i < n; i++) { a[i] *= inv; } } template struct Poly : public std::vector> { using Value = MInt

; Poly() : std::vector() {} explicit constexpr Poly(int n) : std::vector(n) {} explicit constexpr Poly(const std::vector &a) : std::vector(a) {} constexpr Poly(const std::initializer_list &a) : std::vector(a) {} template> explicit constexpr Poly(InputIt first, InputIt last) : std::vector(first, last) {} template explicit constexpr Poly(int n, F f) : std::vector(n) { for (int i = 0; i < n; i++) { (*this)[i] = f(i); } } constexpr Poly shift(int k) const { if (k >= 0) { auto b = *this; b.insert(b.begin(), k, 0); return b; } else if (this->size() <= -k) { return Poly(); } else { return Poly(this->begin() + (-k), this->end()); } } constexpr Poly trunc(int k) const { Poly f = *this; f.resize(k); return f; } constexpr friend Poly operator+(const Poly &a, const Poly &b) { Poly res(std::max(a.size(), b.size())); for (int i = 0; i < a.size(); i++) { res[i] += a[i]; } for (int i = 0; i < b.size(); i++) { res[i] += b[i]; } return res; } constexpr friend Poly operator-(const Poly &a, const Poly &b) { Poly res(std::max(a.size(), b.size())); for (int i = 0; i < a.size(); i++) { res[i] += a[i]; } for (int i = 0; i < b.size(); i++) { res[i] -= b[i]; } return res; } constexpr friend Poly operator-(const Poly &a) { std::vector res(a.size()); for (int i = 0; i < int(res.size()); i++) { res[i] = -a[i]; } return Poly(res); } constexpr friend Poly operator*(Poly a, Poly b) { if (a.size() == 0 || b.size() == 0) { return Poly(); } if (a.size() < b.size()) { std::swap(a, b); } int n = 1, tot = a.size() + b.size() - 1; while (n < tot) { n *= 2; } if (((P - 1) & (n - 1)) != 0 || b.size() < 128) { Poly c(a.size() + b.size() - 1); for (int i = 0; i < a.size(); i++) { for (int j = 0; j < b.size(); j++) { c[i + j] += a[i] * b[j]; } } return c; } a.resize(n); b.resize(n); dft(a); dft(b); for (int i = 0; i < n; ++i) { a[i] *= b[i]; } idft(a); a.resize(tot); return a; } constexpr friend Poly operator*(Value a, Poly b) { for (int i = 0; i < int(b.size()); i++) { b[i] *= a; } return b; } constexpr friend Poly operator*(Poly a, Value b) { for (int i = 0; i < int(a.size()); i++) { a[i] *= b; } return a; } constexpr friend Poly operator/(Poly a, Value b) { for (int i = 0; i < int(a.size()); i++) { a[i] /= b; } return a; } constexpr Poly &operator+=(Poly b) { return (*this) = (*this) + b; } constexpr Poly &operator-=(Poly b) { return (*this) = (*this) - b; } constexpr Poly &operator*=(Poly b) { return (*this) = (*this) * b; } constexpr Poly &operator*=(Value b) { return (*this) = (*this) * b; } constexpr Poly &operator/=(Value b) { return (*this) = (*this) / b; } constexpr Poly deriv() const { if (this->empty()) { return Poly(); } Poly res(this->size() - 1); for (int i = 0; i < this->size() - 1; ++i) { res[i] = (i + 1) * (*this)[i + 1]; } return res; } constexpr Poly integr() const { Poly res(this->size() + 1); for (int i = 0; i < this->size(); ++i) { res[i + 1] = (*this)[i] / (i + 1); } return res; } constexpr Poly inv(int m) const { Poly x{(*this)[0].inv()}; int k = 1; while (k < m) { k *= 2; x = (x * (Poly{2} - trunc(k) * x)).trunc(k); } return x.trunc(m); } constexpr Poly log(int m) const { return (deriv() * inv(m)).integr().trunc(m); } constexpr Poly exp(int m) const { Poly x{1}; int k = 1; while (k < m) { k *= 2; x = (x * (Poly{1} - x.log(k) + trunc(k))).trunc(k); } return x.trunc(m); } constexpr Poly pow(int k, int m) const { int i = 0; while (i < this->size() && (*this)[i] == 0) { i++; } if (i == this->size() || 1LL * i * k >= m) { return Poly(m); } Value v = (*this)[i]; auto f = shift(-i) * v.inv(); return (f.log(m - i * k) * k).exp(m - i * k).shift(i * k) * power(v, k); } constexpr Poly sqrt(int m) const { Poly x{1}; int k = 1; while (k < m) { k *= 2; x = (x + (trunc(k) * x.inv(k)).trunc(k)) * CInv<2, P>; } return x.trunc(m); } constexpr Poly mulT(Poly b) const { if (b.size() == 0) { return Poly(); } int n = b.size(); std::reverse(b.begin(), b.end()); return ((*this) * b).shift(-(n - 1)); } }; void solve() { i64 n, m; cin >> n >> m; Poly G(n + 1); for (int i = 1; i <= n; i++) { if (i % 3 != 0) { G[i] = Z((i / 3) % 2 ? -1 : 1); } G[i] *= Z(m + 1 - i); } cout << (Poly{Z(1)} - G).inv(n + 1)[n] << '\n'; } int main() { cin.tie(0)->sync_with_stdio(0); cin.exceptions(cin.failbit); int t = 1; // cin >> t; while (t--) { solve(); } return 0; }