MOD = 10**9 + 7 a, b = map(int, input().split()) n = int(input()) if n == 0: print(2 % MOD) elif n == 1: print((2 * a) % MOD) else: p = (2 * a) % MOD a_sq = (a * a) % MOD a_sq_minus_b = (a_sq - b) % MOD q = (-a_sq_minus_b) % MOD # Ensure q is positive # Define matrix [[p, q], [1, 0]] def multiply(mat1, mat2): res = [[0]*2 for _ in range(2)] res[0][0] = (mat1[0][0] * mat2[0][0] + mat1[0][1] * mat2[1][0]) % MOD res[0][1] = (mat1[0][0] * mat2[0][1] + mat1[0][1] * mat2[1][1]) % MOD res[1][0] = (mat1[1][0] * mat2[0][0] + mat1[1][1] * mat2[1][0]) % MOD res[1][1] = (mat1[1][0] * mat2[0][1] + mat1[1][1] * mat2[1][1]) % MOD return res def matrix_power(mat, power): result = [[1, 0], [0, 1]] # Identity matrix while power > 0: if power % 2 == 1: result = multiply(result, mat) mat = multiply(mat, mat) power //= 2 return result exponent = n - 1 mat = [[p, q], [1, 0]] mat_pow = matrix_power(mat, exponent) x1 = (2 * a) % MOD x0 = 2 % MOD xn = (mat_pow[0][0] * x1 + mat_pow[0][1] * x0) % MOD print(xn)