mod = 10**9 + 7 def multiply(a, b): new_a = [[0]*2 for _ in range(2)] new_a[0][0] = (a[0][0] * b[0][0] + a[0][1] * b[1][0]) % mod new_a[0][1] = (a[0][0] * b[0][1] + a[0][1] * b[1][1]) % mod new_a[1][0] = (a[1][0] * b[0][0] + a[1][1] * b[1][0]) % mod new_a[1][1] = (a[1][0] * b[0][1] + a[1][1] * b[1][1]) % mod return new_a def matrix_power(mat, power): result = [[1, 0], [0, 1]] # Identity matrix while power > 0: if power % 2 == 1: result = multiply(result, mat) mat = multiply(mat, mat) power //= 2 return result A, B = map(int, input().split()) N = int(input()) Ts = [int(input()) for _ in range(N)] for T in Ts: if T == 0: print(2 % mod) continue K = T // 2 is_even = (T % 2) == 0 M = [ [A % mod, B % mod], [1, 0] ] if K == 0: M_power = [[1, 0], [0, 1]] else: M_power = matrix_power(M, K) R = (M_power[0][0] + M_power[0][1]) % mod G = (M_power[1][0] + M_power[1][1]) % mod if is_even: ans = (R + G) % mod else: B_add = (R * A + G * B) % mod ans = (R + G + B_add) % mod print(ans)