MOD = 10**9 + 7 def main(): import sys input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 k = int(input[ptr]) ptr += 1 a = [] if k > 0: a = list(map(int, input[ptr:ptr + k])) # Precompute factorials modulo MOD up to N max_n = N factorial = [1] * (max_n + 1) for i in range(1, max_n + 1): factorial[i] = factorial[i-1] * i % MOD if k == 0: print(factorial[N] % MOD) return # Process a_i's masks = [] for num in a: mask = num bit_count = bin(mask).count('1') masks.append((bit_count, mask)) # Check if all masks have unique bit counts seen = set() for cnt, _ in masks: if cnt in seen: print(0) return seen.add(cnt) # Sort by bit count masks.sort() bit_counts = [cnt for cnt, _ in masks] masks_sorted = [mask for _, mask in masks] # Check if the sorted masks form a chain of subsets for i in range(1, len(masks_sorted)): prev_mask = masks_sorted[i-1] current_mask = masks_sorted[i] if (prev_mask & current_mask) != prev_mask: print(0) return # Compute the parts (segments) parts = [] prev_bit_count = 0 for cnt, mask in masks: part = cnt - prev_bit_count if part <= 0: print(0) return parts.append(part) prev_bit_count = cnt # Remaining bits after the last mask last_bit_count = prev_bit_count rem = N - last_bit_count if rem < 0: print(0) return parts.append(rem) # Compute the product of factorials of each part result = 1 for p in parts: result = result * factorial[p] % MOD print(result % MOD) if __name__ == '__main__': main()